
 

INFORMATION & SECURITY. An International Journal, Vol. 2, 1999, 102-112. 

    

I&S 

AN INTERACTING MULTIPLE MODEL  

ALGORITHM FOR STOCHASTIC  

SYSTEMS CONTROL 

Ludmila MIHAYLOVA and Emil SEMERDJIEV 

1. Introduction 

During the last years the multiple-model (MM) approach has become very popular 

and widely applied for estimation
2,5,7,9

 and control
1,3, 4, 6-8, 10-12

 of stochastic systems 

under different kinds of uncertainty - unknown model structure or parameters. In the 

engineering applications different multiple model algorithms for system control have 

been proposed.
3, 10, 11

 The greatest number of them are of Bayesian nature.
1,3,4,7,8,10,12

 

Their common feature is the presence of a bank of estimators providing separate state 

estimates required for the overall control synthesis. But, the Interacting Multiple 

Model estimator - the most cost-effective scheme for solving various problems for 

state and parameter estimation,
2,5,13

 has not yet been used to solve problems for 

systems control.  

In the present paper an IMM algorithm is designed for control of stochastic systems 

in the presence of parametric model uncertainty. The overall system control is formed 

as a probabilistically weighted sum of the control processes provided by separate 

regulators. Regulators are synthesized for a set of respective models covering the 

uncertainty domain. These regulators optimize a quadratic cost function. 

 The separate state estimates, generated by a modified IMM estimation algorithm and 

based on the same models, represent the respective regulators’ inputs. The model 

probabilities are the weighting coefficients for the separate control processes, each 

computed as a full-state feedback. The algorithm performance is evaluated through 

Monte Carlo simulation experiments and compared to other MM algorithms for 

control.  
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2. IMM algorithm for systems control 

The system is described by the model: 
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where x nx  is the system state vector, z nz is the measurement vector; 

u nu  - the control input vector; v nv  and w nz  are mutually 

uncorrelated, white, zero mean Gaussian noises with covariances Dv  and Dw , 

respectively. The parameter mk  presents the current system mode. The structure of 

the model (1) is supposed known, but its parameters belong to an uncertainty domain 

and are assumed to depend on different system modes.  

The problem consists in synthesizing a control sequence  uk , so that the quadratic 

cost function 
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is minimized, where Q  and R  are appropriately chosen weighting matrices ( Q  - 

positive semi-definite, R  - positive definite) and M{.}  is the mathematical 

expectation operator.  

Because the accurate system model is unknown, the system is described by a number 

of models from the preliminary determined uncertainty domain. The event that the i-

th model mi  is actual at time k  is denoted as  

  m k m k mi i( )   .  

It is assumed that the system model sequence is a Markov chain with transition 

probabilities  

 P m k m k kj i( ) / ( ) ( )1 = Pri j  
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The main functional components of the IMM algorithm for control are: 

separate estimators - Kalman filters (KF), running in parallel and providing the input 

signals (the partial state estimates) for the regulators; 

separate regulators, generating the single-model-based control processes.  

The control process of the system is computed as a state feedback: 

        u k k K k m x ki r i i i

i

q
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where i  are the IMM mode probabilities, Kr i,  - the matrices of the regulators 

working in parallel, xi  are partial state estimates generated by q  Kalman filters. The 

partial regulators are linear quadratic Gaussian (LQG). The matrices Kr i,  are 

computed through minimization of the cost function J  for each system model 

 m F G G H D Di i u i i v i w i, , , , ,, , ,v,i , i q 1 2, , ,  with matrices chosen from the 

uncertainty domain. The regulators’ gains are generated by solving the Riccati 

difference equations.  

The overall state estimate xk , generated by the IMM estimator, has the form: 
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This standard IMM algorithm step for separate estimates combination is excluded 

here.  

Each IMM partial state estimate 
,xi k  ( i q1 2, , , ) is computed by a respective 

Kalman filter: 

 ( / ) ( )  ( / ) ( ) ( ),x k k F k x k k G k u ki i i u i  1 ,          (6) 

 ( / )  ( / ) ( ) ( ),x k k x k k K k ki i f i i      1 1 1 1 1 ,      (7) 

i i ik z k H k x k k( ) ( ) ( )  ( / )     1 1 1 1 ,           (8) 

P k k F k P k k F k G k D k G ki i i i
T

v i v i v i
T( / ) ( ) ( / ) ( ) ( ) ( ) ( ), , ,  1 ,   (9) 

S k H k P k k H k D ki i i i i
T

w i( ) ( ) ( / ) ( ) ( ),      1 1 1 1 1 ,  (10) 

K k P k k H k S ki i i
T

i( ) ( / ) ( ) ( )    1 1 1 11
,      (11) 

P k k P k k K k S k K ki i i i i
T( / ) ( / ) ( ) ( ) ( )       1 1 1 1 1 1 ,  (12) 

where  ( / )x k ki  and  ( / )x k ki 1  are the filtered and predicted estimates of  

x k( ) ;  i , Si  are the innovation process and its covariance matrix; K f i,  - the filter 

gain; Pi  - the error covariance matrix.  
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Figure 1: Scheme of the IMM algorithm for control 

Figure 1 shows the scheme of the proposed IMM algorithm for control. Similarly to 

the IMM estimator,
2,5,13

 the IMM algorithm for control comprises the four major 

steps:  

 interacting or mixing of the state estimates and their covariances, respectively;  

 model-conditional filtering, performed in parallel for each mode through a 

respective Kalman filter - eqs. (6)-(12); 

 model probability update, based on the model conditional likelihood functions; 

 control combination, according to (4), which yields the overall control process as 

the probabilistically weighted sum of the control processes, provided by the 

regulators. 

3. Comparison with other MM control algorithms 

The main difference between the proposed IMM algorithm for control with respect to 

other MM control algorithms
1,3,4,6,7,8,11,12

 relies on the nature of the Interacting 

Multiple Model approach.
2,5,13

 The main feature is the dynamic interaction between 

the single-model filters, obtained by mixing the estimates of all filters at the previous 

step and using the mixed estimate as initial estimate for the filters in the next step. A 
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very important is the assumption that the transition between the different controlled 

regimes can be described as a Markov process and it is reflected in the transition 

probability matrix. The presented control algorithm is compared in the next section 

with the Multiple Model Adaptive Controller (MMAC), proposed in 
8,12

. The two 

algorithms are characterized by the same multiple model structure, they are of 

Bayesian type, but the mechanism for model probabilities computation is different. A 

comparison of the IMM estimator for detection and diagnosis of sensor and actuator 

failures with the MM adaptive estimator (MMAE)
8
 is performed in 

14
.  

The multiple model estimator/controller (MMAE/ MMAC)
3,4,7,8,12

 uses various 

heuristic techniques, such as Kalman filtering retuning and bounded conditional mode 

probabilities. The effect termed “lockout” of these probabilities can be observed in 

the MMAC algorithm. It expresses itself in probabilities going to zero, that is why an 

additional lower bound of these probabilities is predetermined.  

The decision thresholds for moving of the bank of filters/ controllers are also 

determined empirically. These techniques enhance the performance of the 

MMAE/MMAC in an empirical fashion. In contrast to them the IMM algorithm for 

control is working without additional tuning procedures.  

4. Performance evaluation 

Results illustrating the efficiency of the proposed IMM algorithm for stochastic 

systems control are given. Its performance is evaluated by Monte Carlo simulation 

experiments for 100 runs and compared to the MMAC algorithm performance, 

presented in 
8,12

. The MMAC algorithm is implemented in the simulation experiments 

with an artificial lower bound for the mode probabilities min . 0 001 , as imposed  

in 
8
. In the example the overall control for both algorithms is synthesized based on the 

same steady-state constant gain regulators.  

Example. The proposed IMM algorithm for control is applied to a paper machine
14

 

producing a super-thin condenser paper. The state space model of its headbox 

section
14

 has the form: 

x k Fx k G u k G v ku v( ) ( ) ( ) ( )   1 , 

where 
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. , 

G Iv  3  and I  is the identity matrix. The measurement matrix and the noise 

covariances are: 
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H 
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1 0 0

0 0 1
,  D diagv  016 016 1. , . , ,  D diagw  0 09 016. , . . 

 

It is supposed that the system matrix F  is inaccurately known. The model 

uncertainty domain here is approximated by four models: 
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The other model matrices coincide with the true model matrices. The fourth model is 

the closest to the true one. The matrices of the quadratic cost function are chosen to 

provide rapid transient processes of the closed-loop system: Q I100 3 , 

R I 0 01 2. . 

The IMM transition probability matrix and the initial mode probability vector are 

chosen : 

 

Pr
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The following measures of performance are used:  

 the recursively computed cost function J  (Fig. 2), as instead of the true state x  

in (3) its overall estimate x  is replaced; 

 the averaged algorithm mode probabilities (shown in Figs. 3 and 4).  

 

It is denoted below: “1” - the IMM algorithm for control and “2” - the MMAC 

algorithm.
8
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Figure 2: Cost function J   
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Figure 3: Average IMM mode probabilities 
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Figure 4: Average MMAC mode probabilities 

 

In the considered here stationary example both algorithms show nearly equal 

performance: they quickly recognize the fourth model as the closest to the true one 

(its probability is the greatest). 

The test scenario has been artificially complicated to evaluate the algorithm 

performance in the nonstationary case. In the next scenario abrupt changes arise in 

elements of the matrix F : 
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The computed cost function J  and the mode probabilities are presented in Figs. 5-7. 
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Figure 5: Cost function J  
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Figure 6: Average IMM mode probabilities 
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Figure 7: Average MMAC mode probabilities 

In both simulation experiments the cost function of the IMM algorithm for control is 

smaller than the respective MMAC values. The obvious priority of the IMM 

algorithm for control is due to the faster response to abrupt changes in the parameters 

(see Fig.6 and Fig.7). On the basis of the simulation experiments it can be concluded 

that in stationary conditions the results of both algorithms are comparable, but in the 

nonstationary case, the IMM algorithm for control yields better overall performance 

than the MMAC algorithm with respect to fast response and reliability.  

5. Conclusions  

An Interacting Multiple Model (IMM) algorithm for stochastic systems control in the 

presence of parametric model uncertainty is designed, for stationary and 

nonstationary systems. It is based on the cost-effective IMM estimator. The overall 

system control is synthesized as a probabilistically weighted sum of the control 

processes received from separate regulators. These regulators are synthesised for each 

model from the uncertainty domain. The overall control process is computed as a 

state feedback. The well known and cost effective IMM filter is used for partial state 

estimates generation. The IMM partial state estimates are used by regulators working 

in parallel to compute the partial control processes and the common state feedback. 

Each regulator is synthesised based on a quadratic cost function minimization. 

Results from simulation experiments are given. The algorithm presented is compared 

to other MM algorithm for control of Bayesian type. The simulation results 

demonstrate that the IMM algorithm for control provides better results in the   
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presence of abrupt changes in the parameters than the MMAC algorithm. The 

performance of both algorithms is comparable in a stationary mode. 
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