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A B S T R A C T : 

LPWAN (Low-power Wide-area network) networks are well-known since the 
1980s, but due to low efficiency were not in active use for a long time. Modern 
LPWAN is a game-changing technology with true power in network coverage, 
cost efficiency, and low operational expenses. LPWAN services’ most frequent 
market is in smart cities, agriculture, healthcare, and civil defence systems. 
LoRa is considered one of the market leaders in LPWAN; however, the low 
bandwidth of its physical layer makes it unsuitable for high-speed transmis-
sion. The provision of integrity, availability, and confidentiality in IoT networks 
is still of major concern. Data accuracy and lack of control over the transmis-
sion of personal information prevents the active use of the technology in reg-
ulated industries, such as healthcare and civil defence. In this article, we adopt 
LoRa for the transmission of media content, with an ability to regulate the 
quality of data and achieve desired level of integrity and availability. This al-
lows the system to self-configure (train) via more reliable machine learning 
techniques. 
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Introduction 

Internet of Things (IoT) denotes the concept of connected smart devices that 
communicate seamlessly over the Internet. As the market keeps growing, we 
can classify IoT solution into several major categories. The most common way 
to denote them is – mission-critical application and massive IoT, based on the 
technical and commercial requirements they prioritize. Mission-critical solu-
tions are those which require very low latency levels on ultra-reliable networks, 
often combined with very high throughput. Massive IoT applications, on the 
other hand, refers to applications which are less latency-sensitive and have 
lower throughput requirements but require many low-cost, low-energy con-
sumption devices on a network with excellent coverage.1 The growing popular-
ity of IoT has driven up the demand for massive IoT technologies and the num-
ber of smart devices worldwide continues to increase at a dramatic pace. The 
key requirements for massive IoT are long battery life, good coverage, low cost, 
and performance flexibility.  The technology category that addressing those re-
quirements is low power wide area network (LPWAN) technologies.2 

Nevertheless, modern LPWAN networks being actively analysed 3 within past 
years still do not have appropriate information security solutions. Probably the 
first complete analysis of threats and vulnerabilities was published recently.4 
They figured out that LoRa devices have coexisting problems with other LoRa 
networks and devices. Devices using lower spreading factors can corrupt signals 
from devices using higher spreading factor in the same network. Furthermore, 
most LoRaWAN security measures such as the key management and frame 
counters need to be implemented and taken care of by developers or manufac-
turers. Therefore, poor implementation also may put end-devices and gateways 
in danger. A series of articles on key management for LoRa based networks 5,6 
was published later advocating for key-management solutions. There was also 
proposed a way to secure communication for healthcare monitoring system.7  
Another great post describe interference vulnerability.2 

Information security threats should be analysed for many aspects of IoT so-
lutions flow including but not limiting data collection by sensors, data transmis-
sion, data transformation, and analysis. All of the described aspects should be 
considered as sensitive. Threats rate for the given type of system can be classi-
fied with the following order for CIA triad (given order of importance from 1 to 
N) – 1. Integrity, 2. Availability, 3. Confidentiality. This order is driven by the fact, 
that majority of issues related to confidentiality has human nature, where’s in-
tegrity and availability are more technology concerns. 

In this paper, we adopt image transfer via LPWAN network, with an example 
of LoRa as hardware, to self-configure the quality of outputs and provide relia-
ble input for Machine Learning algorithms. We advocate for a new way to define 
integrity within LPWAN networks. Discover and classify existing threats and lim-
itations for media data transfer.  



M. Brazhenenko, V. Shevchenko et al., ISIJ 47, no. 2 (2020): 172-186 
 

 174 

Methods 

We used the methodology of building security profiles based on existing stand-
ards, image compression/decompression methodologies, processing of statisti-
cal and experimental results methods, a theory of probability methods. 

Security profiles for the system 

Based on the existing researches on protection profiles for automated systems 8 
and following the proposed way to choose protection profile it is obvious that 
practically possible should be implemented the following requirements 9,10 for 
the IoT system (Table 1). 

• OR - Objects reuse 

• TI - Trusted Integrity 

• AI - Administrative Integrity 

• R - Rollback 

• DEI - Data exchange Integrity 

• RI - Registration 

• AA - Authorization and authentication 

• TC - Trusted channel 

• RS - Responsibilities separation 

• IPC - Integrity of protection controls 

• ST - Self-testing 

• AE - Authentication on exchange. 

• AS - Authentication of sender 

• AR - Authentication of receiver 

These five profiles allow us to achieve a majority of requirements for integrity 
and availability and as result leaving room to evolve into profiles that address 
confidentiality as well. Data Exchange Integrity – is the major concern within a 
list since media transfer in a low-throughput network is not reasonably possible 
with a single message and so an intelligent approach for data transfer is neces-
sary. Another complication of integrity is coming from the angle of stream-like 
data for example temperature or accelerometer sensor, because in LPWAN net-
works some data loss are expected. 

An important thing to note is that the term integrity in the scope of IoT com-
munication is meant to be different from other more common web or desktop 
applications. Data integrity is the maintenance of, and the assurance of the accu-
racy and consistency of data over its life cycle. We definitely cannot evaluate in-
tegrity in the same way for majority IoT solutions due to the fact that expressed 
quality is not achievable for LPWAN. However, even losing the majority of data 
might not prevent Machine Learning algorithms to produce exactly the same out-
puts. Summarizing all of the above we propose to define that data integrity for 
the signal that was send over LPWAN network is achieved if a client (machinery) 
interpretation for initial signal and received has no difference. 
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Table 1. Protection profiles.  

Requirement Profile 1 Profile 2 Profile 3 Profile 4 Profile 5 

OR    1 1 

TI 1 1 1 1 4 

AI   2 3 4 

R  1 1 2 2 

DEI 1 1 2 2 3 

RI 2 2 2 3 4 

AA 2 2 2 2 2 

TC 1 1 1 1 1 

RS 1 1 2 2 3 

IPC 1 2 2 3 3 

ST  1 2 2 2 

AE 1 1 2 2 3 

AS   1 1 2 

AR    1 2 

 

Automated systems transport layer 

The transport layer obviously has a significant influence on QoS (Quality of Ser-
vice) for data transmission. The latest researches in this area demonstrate that11 
TCP (Transmission Control Protocol) is slightly better than UDP (User Datagram 
Protocol) even in constraint environment. Another research shows that DCCP 
(Datagram Congestion Control Protocol) is the optimal one for media transfer.12 
Latter research shows that there is no reason to send lost package again be-
cause it will not add any value for the end-user. We advocate that this behavior 
is applicable to IoT (Internet of Things) as well. 

The process of data transmission in IoT environment can be represented as a 
mathematical model of a continuous system Fig.1. One of the obvious conclu-
sion relay in a physical behaviour of f ( t ) , representing variation of environ-
ment influence and package losing during data transmission. We propose to 
take the Heaviside step function13 for f ( t ) modelling, where 0t   representing 
successful packet delivery (1): 
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Figure 1: Automated System. 

 0 0

1 0

,t

f ( t )

,t



=



      (1) 

This allows us to formulate transformation function ( t ) (2) and it’s a domain 
( )D   (3) for the automated system as well: 
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where ta is a fallback value when 0t   

 ( ) ( , 0) (0, )D  = −  +       (3) 

Experimental data transfer setup 

Data send by sensors are different in nature, frequency of sending and quality 
of measurement. However, the very basic classification still can be applied from 
the angle of a typical way to transmit data and as a result mathematical models 
can be created. 

• Streaming data – like temperature sensors, GSM (Global System of Mobile 
Communications). Taking priority for the most recent data over lost pack-
ets, make huge sense for this group. 

• Packet data – like image, but in a raw format: TIFF (Tagged Image File For-
mat) 

• Dynamic streaming data – accelerometer is an example. Losing packet 
might cause false-positive results on data analysis stage. 

• Compressed or Encrypted data – any application-level data, which is en-
crypted or compressed. 

We chose the following scenarios of interaction and f ( t ) behaviour: 
Loosing 5% of data (message sequence is not controlled) (4) 

 
1

0
t t

( t ) f ( t ) a f ( t ) ,a
−

 = + =       (4) 
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A. Loosing and mixing 5% of data (message sequence is not controlled) (5) 

 ( t ) g( t ) =       (5) 

B. Loosing 5% of data and replacing it with defaults (message sequence is 
controlled) (6) 

 
1 0t t t( t ) f ( t ) a f ( t ) ,a ,a− = +         (6) 

 

Figure 2: Scenario A, B and C with JPEG image. 
 

Each individual packet sends over LPWAN (Low-power wide-area network) 
due to well-known constraints will not represent an image 14. In order to com-
pare images we should first aggregate a series of packets into a package that 
can be compared to the original signal (7), (8).15   

 

Figure 3: Scenario C with TIFF image. 
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The most widely used and common ways to compare images are PSNR 16 (9), 
(10) and SSIM 17 (11-15) indexes: 
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where MSSiM - Mean Structural Similarity Index Method: 

 PSNR in out SSIM in outPSNR( im ,im ), MSSIM( im ,im ) =  =    (16) 

Experimental results 

For initial evaluation of image transfer quality and capabilities JPEG (Joint Pho-
tographic Experts Group) and TIFF (Tagged Image File Format) images were cho-
sen to represent Zipped and Package data types. (Fig. 2, Fig. 3) 

After processing images through basic scenarios, we can easily identify that 
JPEG being visually identically might be useless for processing engines, TIFF im-
ages for scenario A, B can’t be opened because image rectangle can’t be 
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constructed without them. Scenario C show much better results, image looks 
similar to the original and is a good candidate for the next processing steps. The 
results are outlined in Table 2 and Table 3. 
 

Table 2. JPEG processing results.  

Scenario Description 
SSIM  PSNR  

A 5% Loss 0.81 11.5 

B 5% Loss and Mix 0.54 7.65 

C 5% Loss, Sequence Control 0.84 13.15 

 

Table 3. TIFF processing results.  

Scenario Description 
SSIM  PSNR  

A 5% Loss N/A N/A 

B 5% Loss and Mix N/A N/A 

C 5% Loss, Sequence Control 0.96 20.7 

 
Evaluation of  clearly shows several things that characterize the image 

transfer process in LPWAN networks, raw images like TIFF show better perfor-
mance, but worst file size. Encrypted (compressed) images like JPEG have better 
file size but cannot tackle package lost issue. Also, it is clear enough that the 
absence of packet sequence control makes things even worse. 

LoRa WAN Limitations and Constraints 

Constant sending of huge images through the LoRa network is not really possi-
ble due to the following reasons:  

• Sensors will be interfering 

• Connection latency 

• Other technology limitations 

Sending data with a high bit rate between end nodes connected to a sensor 
like camera within a LoRa (Long-Range) network module 18 is highly constraint 
and limited. This kind of transfer is not suitable for LoRaWAN (Long-Range 
Wide-area network) first of all due to 1% working time (36 sec per hour) per 
node limit. LoRa MAC (Media access control) level responsible for data transi-
tion due to the size and encryption it uses.15 
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Experimental setups were done recently proving that one-time transfer is 
possible, even when the consuming node is waiting for all packets,19 as well as 
prototyping in real-life environment and research on physical layer setup 15 for 
compressed images in JPEG format. On the baseline of this researches it is quite 
clear that we can formulate that data transfer success depends on the following 
factors:  

• Distance 

• Data size 

Distance growth is reducing the potential maximum size of a packet that can 
be transferred over the network 20,15 and require increasing of a spreading factor 
- SF  and reducing bandwidth - BW . Let’s assume that probability of packet loss 
is ( )xP A , D - distance, maxD - maximum acceptable distance for given SF and 
BW  and k - various factors that increasing signal like end node positioning, ab-
sence of natural barriers (17)(18)(19). 

 
max

( ) 1x

D
P A k

D
= − +      (17) 

 ( ) 1 ( )x xP B P A= −      (18) 

 
1 1 1 1( ) ( ) ( ) ( )c c

t c x x x xp C P B P A сP B P A− −= =      (19) 

Then we can define ( )xP B  - as a probability of success, and with Bernoulli 
formula defines tp  -  the probability of failure for a single packet for the package 
and с is a packet count. On the basis of a fact that we are describing sequence 
of independent events for which probability of success can be taken as the same 
value, we can conclude that tp has binomial distribution and mathematical ex-
pectation (20): 

 ( )pM cP B=      (20) 

Latter essentially can be re-formulated as increasing distance influence on 
service quality not only by risk of signal corruption but also through an increas-
ing amount of packets to be send, however individual packet achievement prob-
ability mostly depends on other factors k .15, 19 

JPEG 2000 Experimental results 

Previous researches show that compressing with JPEG2000 has much better 
outputs comparing to other algorithms.19 However, compression with this al-
gorithm expects data loss and requires more computational time, which nega-
tively influences power consumption. In case the amount of loss will be too 
huge machine learning algorithms will not be able to recognize objects on a 



Adopting Machine Learning for Images Transferred with LoRaWAN 
 

 181 

final image processing stage and it became useless, so a necessary level of 
quality control should be built.  

 

Figure 4: Scenario C with TIFF image. 
 

For better visibility of JPEG2000 algorithm, we choose an example with toy 
police machine (Fig.4). The image will be resized to 600x800 and 800x1200 di-
mension and then compressed to target PSNR (Point to signal noise ratio) pro-
vided as an algorithm input parameter. Table 4 and 5 represents results of com-
pression and both PSNR , SSIM . 

Keep reviewing initial objective to provide a reliable input to the machine 
learning algorithms, we can come to conclusion that by manipulation of input 
PSNR value we can regulate output quality to the necessary degree. Within a 
machine learning interface image can be described as a set of roots, that can be 
identified. There are quite a lot of algorithms that allow to perform this kind of 
control, one example is SURF (Speeded of robust features21). On this basis we 
propose to define number of necessary roots that verify similarity as (21)(22)
(23). Roots are used as quality check, allowing to calibrate the system before it 
is used in intended environment.22, 23 

Table 4. Compression 600*800.  

Scenario JPEG2000 (kb) JPEG (kb) 
PSNR  SSIM  

10 1 2 12 53% 

15 1  2 12 53% 

25 2 63 24 74% 

30 2 82 29 82% 

35 21 100 34 92% 

40 52 114 37 95% 
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Table 5. Compression 800*1200.  

Scenario JPEG2000 (kb) JPEG (kb) 
PSNR  SSIM  

10 1 2 12 53% 

15 1  2 12 53% 

25 2 63 24 74% 

30 2 82 29 82% 

35 21 100 34 92% 

40 52 114 37 95% 

 

 ( )x =  1 ( ( ))x =        (21) 

 1( , ) =         (22) 

 , 0, [0, ], =  −           (23) 

where 1,  - functions describing roots before and after compression, ( )x - 
compression function,  - matching roots,  - roots loss, then the quality barrier 
can be set as :(24) 

 min, 1, [0,1], 0p k p p


=     


     (24) 

where mink is either machinery regulated value or human input. 

 

 
Figure 5: Dependency between quality and size. 
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Fig. 5 demonstrates how increasing image quality influence on result file size, 
the most interesting thing is that relation for both image sizes is close to identi-
cal. Also, it is quite easy to see that for all [1,100],PSNR PSNR  there is such a 
value that for all less SSIM  is growing much faster and for all greater vice versa. 
This is a clear indication that once you achieve some level of quality, getting 
more is going to cost doubling network traffic and as a result making whole 
technology useless. That can be reformulated as increasing file size is decreasing 
QoS of a system, and so the goal is to keep it at bare possible minimum. Each 
individual case might have its own optimum value based on particular product, 
however we already can state that defining that value is an iterative process 
that can be described in the following way(25).24, 25 

 

0

min

, [0,100],

,

i h i

y h
y h y h

y

y y h h h N

x x k

+

+
+ +

= +  



=  

     (25) 

Conclusions 

In this paper we evaluate definition of integrity for IoT networks. We advocate 
that for IoT solutions integrity could not be achieved within its traditional mean-
ing and so we should apply less restrictive requirement and rely on data simi-
larity – ability of the system to interpreter input and modified signal in a same 
way. We believe that reliable Machine Learning inputs for image data send over 
LPWAN networks can be achieved by iterative calibrating of the end-node based 
on the specific needs of the product, comparing of necessary roots within an 
image from input and modified signal and validating impact of deviation. Differ-
ence between number of roots can be used as a data quality check. We re-
viewed transport layer of an automatic system and define a mathematical 
model for signal transformation, interesting point is that compression of data in 
any manner with stream algorithm increase the probability of losing the whole 
image, however raw or block algorithms empowered with message sequence 
technique can accept data losses during transfer. 
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