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EXPERIMENTAL VALIDATION OF METAMODELS 

FOR INTELLIGENT AGENTS IN CONFLICT 

James MOFFAT and Susan WITTY 

Introduction 

As discussed in a previous paper,
1
 we are attempting to develop mathematical „meta-

models‟ of agent-based simulation models. These meta-models fall within the area of 

what is loosely referred to as complexity theory, and exploit the mathematical 

approaches which are being developed to gain understanding of natural non-linear 

systems (such as ecosystems of species, or the physics of spin systems). Such an 

approach is most likely to be relevant to future command and control structures such 

as Network Centric Warfare.
2
 In particular, Moffat discusses in detail the connection 

between the mathematics of complexity and the likely emergent behaviour of future 

command and control driven „Information Age‟ conflict.
3
 

Cellular Automata 

As a means of gaining understanding, we have carried out a number of experiments 

using simple cellular automata based models that are relevant to conflict. Such 

models have been developed in response to the theory that human conflict is a 

complex, non-linear system,
4
 which in dynamical system terms, occurs far from 

equilibrium. In other areas of research on the complexity of natural systems, such 

cellular automata models have been used to identify key emergent properties of such 

systems.
5
 

The „new sciences‟ of complexity and chaos, although not yet fully developed into a 

coherent theory, provide a way of looking at such interacting agents in conflict.
6
 In 

this paper we first show in detail that historical data indicate the existence of a fractal 

attractor for at least some types of conflict (based on initial work by Lauren 
7
). We 

then show that experimental data from runs of such simple cellular automata models 

supports the hypotheses, which can be derived from our theoretical meta-models of 

the process. 
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The experimental data presented here have been derived from a particular cellular 

automata model called ISAAC 
8
 which was developed for the US Marine Corps as 

part of their „Project Albert‟ research initiative.
9
 

An Attractor for Conflict 

For non-linear dynamical systems, we know that there are only a small set of possible 

attractors for the dynamics of the system typically corresponding to a stable invariant 

final state, a limit cycle (corresponding to a periodic final state), and a „strange 

attractor‟ (normally a fractal set), corresponding to a chaotic state.
10

 

Lauren indicates that for at least some conflict situations, the dynamics of interaction 

of the forces evolves towards an attractor state, which is independent of the initial 

conditions.
11

 The idea is that an essentially straight line frontage between two tactical 

opponents will buckle into a fractal shape, whose fractal dimension can be calculated 

as a function of the force ratio of the forces involved, (the number of attackers to the 

number of defenders), as derived from Historical Analysis of infantry battles carried 

out by the UK Defence Science and Technology Laboratory (DSTL). Lauren uses as 

a basis for his approach a regression analysis of historical tactical level conflicts 

carried out by DSTL, which indicates that the non-dimensional parameter: 

F = (Number of attack infantry / Number of defence infantry)
685.0

 

is a multiplier for the base number of casualties of the attacking force per defence 

weapon. Note that from a previous work of Moffat we expect powers of non-

dimensional parameters to be of key importance in such „meta-models‟ of the 

process.
12

 In fact, from the same work of the author we can say that this is a meta-

model of Type 2, since the exponent cannot be derived solely from dimensionality 

considerations. As a consequence of this, Lauren was able to shows that the combat 

front will buckle over time, and in the limit will have a fractal dimension D = 1.685. 

Thus for this type of conflict, the dynamics in the time invariant state are similar to 

those of a chaotic system. 

In this case we can derive the underlying dynamics producing this statistical effect. It 

turns out that this fractal factor is due fundamentally to detection of targets,
13

 and 

comes from a model of the engagement process, which leads to the following 

relationship: 

2
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where k1 and k2 are constants, R is the defender rate of fire and T is the number of 

targets in view.
14

 

It reflects the asymmetry of the infantry battle in the following sense.
15

 The attack 

force aim is to close on the defence position, and fire is used in a general suppressive 

mode – actual casualties caused to the defence are only a small part of the process at 

this point. However, from the defence perspective, the aim is to deter the attack, and 

casualties to the attack force are very important. Such casualties to the attack force 

are a direct reflection of the inter-visibility of targets to the defence force as discussed 

above. 

As with most applications of fractal processes, the process breaks down at some point 

due to the granularity of the resolution. In this case, the process remains valid up to 

about 30 meters closing distance between the attack and defence. At that point a 

different mechanism comes into play, leading to local defence surrender and attack 

overrun of defence positions.
16

 

More generally, the figure of 0.685 relates to open terrain. In urban areas it is about 

0.5,
17

 giving rise to a fractal dimension of 1.5 for the attractor state. The closing to 

overrun appears to occur differently in urban and wooded terrain as compared with 

open terrain.
18

 For example, in open conditions, the closing part of the battle occurs 

across the front. By contrast, in urban conditions, the attack force is split into small 

subunits that individually close on defence locations leading to local surrender and 

overrun.  

In terms of modelling such a process using cellular automata, if we assume that this 

process is akin to the cellular automata model of „invasion percolation‟ in which one 

fluid is invaded by another in a porous medium, the fractal dimension of the boundary 

of the resulting interface lies in the range 1.33-1.89,
19

 which agrees with our 

experimental data range (based on historical conflict regression analysis) of 1.5-1.685 

for the fractal dimension of our attractor set. 

Local Clustering 

In order to analyse the „swarming‟ dynamics of cluster formation and dissolution in 

the ISAAC cellular automata model of conflict, first we need to consider how to 

define such a cluster. In Theoretical Physics, it is usual to define neighbouring agents 

as those, which are North, South, East or West, adjacent to the agent in question, 

known as „nearest neighbour‟ clustering. For a single time step in any run of a cellular 

automata based model, the number and size of clusters of agents can be determined 

using the Hoshen-Kopelman algorithm.
20
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Figure 1: Evolution of the Largest Red Cluster Size within the Scenario (Red Successful). 

This algorithm has been applied to a particular „scenario‟ in the ISAAC model in 

which the Red agents attempt, by a swarming strategy, to reach a high value objective 

defended by a smaller number of Blue agents. The particular interest of this scenario 

is that in all stochastic replications (over 100 in total) of the model except one, the 

Red agents reach and take control of the high value objective. In the exceptional case, 

Blue is able to defend this objective successfully. 

Once the cluster numbers and sizes can be determined for each experimental 

replication of the scenario, there are a number of ways to analyse the data. First we 

look at is the size of the largest cluster. This gives an indication of the ability of the 

agents to cluster or the amount of dispersal of the agents. For example, if the largest 

cluster size is near to the total number of agents, we know that that is the only cluster. 

However, if the largest cluster is small, then we know that the agents are dispersed in 

many small clusters. 

Figure 1 shows a typical evolution of the largest cluster size for the Red agents, in the 

case where Red is successful in taking control of the high value objective. Each break 

in the slope of this plot corresponds to a new phase in the operation – first the move 

to infiltration and engagement with Blue agents, secondly the infiltration and 

engagement phase, and finally clustering around the objective.  
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Figure 2: Evolution of the Largest Red Cluster Size within the Scenario (Red Unsuccessful). 

When Red is unsuccessful, only the first two phases are visible, as shown in Figure 2. 

(Note all plots of clustering consider only the agents, which are still alive at the 

moment of sampling). 

Let us look now at the spectrum of cluster size. The Red agents are able to generate a 

wide range of different cluster sizes. This can be seen by examining the frequency 

plot of the largest cluster size, over a replication of the scenario. Figure 3 shows two 

representative plots, for two replications of the scenario corresponding to cases where 

Red was successful (replication 1) and Red was unsuccessful (replication 40).  

For the replications of the scenario where Blue was unsuccessful in its defence of the 

high value objective, Blue only generated a narrow spectrum of largest cluster size 

across the time evolution of the scenario. However, for the singular case where Blue 

was successful, Blue was able to generate a wider spread. This is illustrated in Figure 

4, where the narrow spread of largest cluster size is shown for a number of 

unsuccessful Blue replications, and compared to the singular case (replication 40) 

where Blue was successful. 
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Figure 3: Frequency Distribution of Largest Red Cluster Size. 
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Figure 4: Frequency Distribution of Largest Blue Cluster Size. 
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Cluster Size Distribution 

All of this experimental evidence, based on looking just at the largest cluster size at a 

given time step in the simulation, indicates that clustering is a key component in 

determining the emergent behaviour of the agent simulation, as is also predicted by 

our previous theoretical analysis.
21

 Let us now look at the statistical distribution 

across all cluster sizes, averaged across a scenario replication. From theory we expect 

this to be a power law distribution, i.e. of the form: 

SSP :)(  

where S is the cluster size, and   is a power law exponent. On a Log-Log scale, this 

implies a straight-line relationship. We would expect to see „cut-off effects‟ at each 

end of such a plot where the relationship breaks down due to finite scaling effects (for 

example we cannot consider a cluster size smaller than 1). Figure 5 shows such a 

Log-Log plot of cluster size for the Red agents, over a number of replications. It is 

clear from this that there is such an intermediate regime of system behaviour, as 

expected from theory, where the cluster size distribution follows a power law 

distribution. This is indicative of a fractal relation for cluster creation.
22
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Figure 5: Distribution across All Red Cluster Sizes. 
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Conclusion 

We have first shown in detail how, for certain types of conflict across a frontage, the 

dynamics of the conflict evolves toward a fractal attractor whose fractal dimension 

lies in the range (from historical experimental data) of 1.5-1.685. This is shown to be 

compatible with results of the cellular automata model of „invasion percolation‟ that 

produces a fractal front with dimension in the range 1.33-1.89. We have then shown 

that clustering is a key contributor to the emergent behaviour of the ISAAC cellular 

automata model of conflict. The nature of this contribution is as expected from our 

earlier theoretical analysis. In particular, the distribution of cluster size follows a 

power law in the intermediate regime; a signal of fractal clustering. 
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