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Abstract: The efficient management and combination of uncertain and conflict-
ing sources of information remain of primal importance for the development of re-
liable information fusion systems. Advanced fusion systems must deal both with
quantitative and qualitative aspects of beliefs expressed by the different sources
of information (sensors, expert systems, human reports, etc). Thispaper intro-
duces the theory of plausible and paradoxical reasoning, known as DSmT (Dezert-
Smarandache Theory) in literature, developed originally for dealing with impre-
cise, uncertain and potentially highly conflicting sources of information providing
quantitative beliefs on a given set of possible solutions of a given problem. We
also propose in this paper new ideas on a possible extension of DSmT for the
combination of uncertain and conflicting qualitative information in order to deal
directly with beliefs expressed with linguistic labels instead of numerical values to
be closer to the nature of information expressed in natural languages and available
directly from human experts.
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1 Introduction

The development of DSmT (Dezert-Smarandache Theory) [30] arises from the neces-
sity to overcome the inherent limitations of DST (Dempster-Shafer Theory) [29] which
are closely related with the acceptance of Shafer’s model (i.e. working with anhomo-
geneousframe of discernmentΘ defined as a finite set ofexhaustiveand exclusive
hypothesesθi, i = 1, . . . , n), the third excluded middle principle, and Dempster’s rule
for the combination of independent sources of evidence. Limitations of DST are well
reported in literature [46, 37, 47] and several alternativerules to Dempster’s rule of
combination can be found in [10, 42, 16, 18, 28, 30] and very recently in [31, 32, 13].
DSmT provides a new mathematical framework for the fusion ofquantitative or qual-
itative beliefs which appears less restrictive and more general than the basis and con-
straints of DST.
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The basis of DSmT is the refutation of the principle of the third excluded middle
and Shafer’s model in general, since for a wide class of fusion problems the hypothe-
ses one has to deal with can have different intrinsic naturesand also appear only vague
and imprecise in such a way that precise refinement is just impossible to obtain in re-
ality so that the exclusive elementsθi cannot be properly identified and defined. Many
problems involving fuzzy/vague continuous and relative concepts described in natural
language with different semantic contents and having no absolute interpretation enter
in this category. Although DSmT was initially developed forthe fusion of quantitative
beliefs (i.e. numbers/masses in[0, 1] satisfying a given set of constraints - see later),
we will show in section 3 how it can be extended quite directlyfor the fusion of quali-
tative beliefs (i.e. when precise numbers are replaced by imprecise linguistic labels).

DSmT starts with the notion offree DSm modeland considersΘ only as a frame of
exhaustive elements which can potentially overlap and havedifferent intrinsic natures
and which also can change with time with new information and evidences received on
the model itself. DSmT offers a flexibility on the structure of the model one has to
deal with. When the free DSm model holds, the conjunctive consensus is used. If the
free model does not fit the reality because it is known that some subsets ofΘ contain
elements truly exclusive but also possibly truly non existing at all at a given time (in
dynamic1 fusion), new fusion rules must be used to take into account these integrity
constraints. The constraints can be explicitly introducedinto the free DSm model to fit
it adequately with our current knowledge of the reality; we actually construct ahybrid
DSm modelon which the combination will be efficiently performed. Shafer’s model
corresponds actually to a very specific hybrid DSm (and homogeneous) model includ-
ing all possible exclusivity constraints. DSmT has been developed to work with any
model and to combine imprecise, uncertain and potentially high conflicting sources for
static and dynamic information fusion. DSmT refutes the idea that sources provide
their (quantitative or qualitative) beliefs with the same absolute interpretation of ele-
ments ofΘ; what is considered as good for somebody can be considered asbad for
somebody else. This paper is a revised and extended version of [6, 7, 34, 8].

After a short presentation of hyper-power set and DSm modelsin this section, we
will present in section 2 the main combination rules for the fusion of quantitative pre-
cise or imprecise beliefs, i.e. the Classic (DSmC), the Hybrid DSm (DSmH) and the
proportional conflict redistribution (PCR) rules of combination. Section 3 extends the
quantitative fusion rules of section 2 to their qualitativecounterparts. Such extension
allows to deal directly with beliefs expressed with linguistic labels extracted from nat-
ural language.

1i.e. when the frameΘ and/or the modelM is changing with time.
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1.1 Notion of hyper-power set

Let Θ = {θ1, . . . , θn} be a finite set (called frame) ofn exhaustive elements2. The free
Dedekind’s lattice denotedhyper-power setDΘ [30] is defined as

1. ∅, θ1, . . . , θn ∈ DΘ.

2. If A,B ∈ DΘ, thenA ∩ B andA ∪ B belong toDΘ.

3. No other elements belong toDΘ, except those obtained by using rules 1 or 2.

If |Θ| = n, then|DΘ| ≤ 22n

. The generation ofDΘ is presented in [30]. Since for any
given finite setΘ, |DΘ| ≥ |2Θ|, we callDΘ thehyper-power setof Θ. |DΘ| for n ≥ 1
follows the sequence of Dedekind’s numbers:1,2,5,19,167,... An analytical expression
of Dedekind’s numbers obtained by Tombak and al. can be foundin [30].

Example: If Θ = {θ1, θ2, θ3}, then its hyper-power setDΘ includes the following
nineteen elements:∅, θ1∩θ2∩θ3, θ1∩θ2, θ1∩θ3, θ2∩θ3, (θ1∪θ2)∩θ3, (θ1∪θ3)∩θ2,
(θ2∪θ3)∩θ1, (θ1∩θ2)∪ (θ1∩θ3)∪ (θ2∩θ3), θ1, θ2, θ3, (θ1∩θ2)∪θ3, (θ1∩θ3)∪θ2,
(θ2 ∩ θ3) ∪ θ1, θ1 ∪ θ2, θ1 ∪ θ3, θ2 ∪ θ3 andθ1 ∪ θ2 ∪ θ3.

1.2 Free and hybrid DSm models

Θ = {θ1, . . . , θn} denotes the finite set of hypotheses characterizing the fusion prob-
lem. DΘ constitutes thefree DSm modelMf (Θ) and allows to work with fuzzy con-
cepts which depict a continuous and relative intrinsic nature. Such kinds of concepts
cannot be precisely refined with an absolute interpretationbecause of the unapproach-
able universal truth. When allθi are truly exclusive discrete elements,DΘ reduces to
the classical power set2Θ. This is what we call the Shafer’s model, denotedM0(Θ).
Between the free DSm model and the Shafer’s model, there exists a wide class of fusion
problems represented in term of DSm hybrid models whereΘ involves both fuzzy con-
tinuous concepts and discrete hypotheses. In such class, some exclusivity constraints
and possibly some non-existential constraints (especially when working on dynamic
fusion) have to be taken into account. Each hybrid fusion problem is then characterized
by a proper hybrid DSm modelM(Θ) with M(Θ) 6= Mf (Θ) andM(Θ) 6= M0(Θ).
The main differences between DST and DSmT are (1) the model onwhich one works
with, and (2) the choice of the combination rule. We use here the generic notationG
for denoting eitherDΘ (when working in DSmT) or2Θ (when working in DST). We
denoteG∗ the setG from which the empty set is excluded(G∗ = G \ {∅)}).

2We do not assume here that elementsθi have the same intrinsic nature and are necessary exclusive.
There is no restriction onθi but the exhaustivity which is not a strong constraint since we can always
introduce if necessary a closure element representing all missing hypotheses, sayθ0, in order to always
work in a closed world.
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• A 3D Example of free DSm model: When Θ = {θ1, θ2, θ3}, the free-model
Mf (Θ) corresponds to the following Venn diagram where all elements can over-
lap partially but with vague boundaries in such a way that no exact/precise re-
finement is possible.
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Figure 1: Venn Diagram for the free DSm modelMf (Θ)

• A 3D Example of a hybrid DSm model: Let’s considerΘ = {θ1, θ2, θ3} and
only the exclusivity constraint ofθ3 with respect toθ1 andθ2, then one gets (see
figure 2) the following Venn diagram for this specific hybrid DSm modelM(Θ)
defined byΘ and the chosen (integrity) constraint.
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Figure 2: Venn Diagram for a hybrid DSm modelM(Θ)

• A 3D Example of Shafer’s model: Let’s considerΘ = {θ1, θ2, θ3}. Shafer’s
model, denotedM0(Θ) assumes all elements ofΘ being truly exhaustive and
exclusive. Its corresponding Venn diagram corresponds to following figure.
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Figure 3: Venn Diagram for Shafer’s modelM0(Θ)

2 Fusion of quantitative beliefs

2.1 Quantitative belief functions

In DSmT framework, a (precise) quantitative basic belief assignment3 (bba) associated
with a given source of information (body of evidence) about aframeΘ is defined as a
precise mappingm(.) from G into [0, 1], i.e. m(.) : G → [0, 1] satisfying:

m(∅) = 0 and
∑

A∈G

m(A) = 1 (1)

Fromm(.), we define the (quantitative) credibility and plausibilityfunctions as:

Bel(A) ,
∑

B⊆A
B∈G

m(B) and Pl(A) ,
∑

B∩A 6=∅
B∈G

m(B) (2)

These definitions remain compatible with the definitions of Bel(.) and Pl(.) given in
DST whenM0(Θ) holds [29] since in that caseG = DΘ reduces to classical power-
set2Θ.

2.2 Combinations of precise quantitative beliefs

We present here the three main DSm fusion rules proposed in DSmT framework for
the combination of precise quantitative beliefs. The most simple rule is the Classic
DSm rule (DSmC) which corresponds to the consensus operatoron hyper-power set
when the free DSm model holds. The second and more sophisticated one is the DSm
hybrid rule (DSmH) [30] which allows to work on any static or dynamic hybrid model
and also to work on the Shafer’s model whenever this model holds. (DSmH) is a direct
extension of Dubois & Prade’s rule [10] for dealing with the dynamic/temporal fusion
(i.e. when the frame and its model/constraints change with time). Then we present

3also called belief mass in the literature.
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the proportional conflict redistribution rule #5 (PCR5) which proposes a more subtle
transfer of the conflicting masses than (DSmH) [32, 31]. (DSmH) and PCR rules are
mathematically well defined and work both with any models andwhatever the value the
degree of conflict can take. In practice, when reliabilitiesof sources are known, we can
easily take them into account in all DSm-based fusion rules by discounting them by the
proper discounting factor and using classical discountingapproach of beliefs [29, 30].
We will not go deeper in the presentation of well-known discounting techniques here
since we consider them less fundamental than the combination. We just want to em-
phasize here that this preprocessing/discounting step, although very important from
practical point of view must however never appear as a substitute or as an artificial
engineering trickto circumvent the inherent deficiencies of a chosen combination rule.
Even if the DSm-based rules work for any degree of conflict between sources, we do
not claim that they should be applied blindly in practice when conflict becomes very
large, without trying first to analyze the origins of the partial conflicts, estimate and
take into account (when it is possible) the reliability of each source before their combi-
nation. But once all these necessary preliminary works (deep analysis of the problems,
the refinement of the model, and reliability assessment of each source) have been done,
one has always to choose what we consider the most legitimatecombination rule we
will apply. DSm-based rule provide possible new solutions and serious alternatives
for the combination of uncertain, imprecise and conflictinginformation. Comparisons
of the different main quantitative rules of combination with several examples can be
found in [30, 32, 31, 8, 13].

Classic DSm fusion rule (DSmC)

When the free DSm modelMf (Θ) holds, the conjunctive consensus, called DSm clas-
sic rule (DSmC), is performed onDΘ. DSmC of two independent4 sources associated
with gbbam1(.) andm2(.) is thus given∀C ∈ DΘ by [30]:

mDSmC(C) =
∑

A,B∈DΘ

A∩B=C

m1(A)m2(B) (3)

DΘ being closed under∪ and∩ operators, DSmC guarantees thatm(.) is a proper
gbba. DSmC is commutative and associative and can be used forthe fusion of sources
involving fuzzy concepts wheneverMf (Θ) holds. It can be easily extended for the
fusion ofk > 2 independent sources [30].

4While independence is a difficult concept to define in all theories managing epistemic uncertainty, we
consider that two sources of evidence are independent (i.e.distinct and noninteracting) if each leaves one
totally ignorant about the particular value the other will take.
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Example for (DSmC)

Let’s consider a generalization of Zadeh’s example [46, 47]and takeΘ = {θ1, θ2, θ3},
0 < ǫ1, ǫ2 < 1, be two positive numbers and two experts providing the quantitative and
precise bbam1(θ1) = 1−ǫ1, m1(θ2) = 0, m1(θ3) = ǫ1, m2(θ1) = 0, m2(θ2) = 1−ǫ2
andm2(θ3) = ǫ2.

If one adopts the free-DSm model forΘ (i.e. we accept the non exclusivity of
hypotheses), using (DSmC) one gets zero for all masses ofDΘ except the following
ones:

mDSmC(θ3) = ǫ1ǫ2

mDSmC(θ1 ∩ θ2) = (1 − ǫ1)(1 − ǫ2)

mDSmC(θ1 ∩ θ3) = (1 − ǫ1)ǫ2

mDSmC(θ2 ∩ θ3) = (1 − ǫ2)ǫ1

Hybrid DSm fusion rule (DSmH)

WhenMf (Θ) does not hold (some integrity constraints exist), one dealswith a proper
DSm hybrid modelM(Θ) 6= Mf (Θ). DSm hybrid rule (DSmH) fork ≥ 2 indepen-
dent sources is thus defined for allA ∈ DΘ as [30]:

mDSmH(A) , φ(A) ·
[

S1(A) + S2(A) + S3(A)
]

(4)

whereφ(A) is thecharacteristic non-emptiness functionof a setA, i.e. φ(A) = 1 if
A /∈ ∅ andφ(A) = 0 otherwise, where∅ , {∅M, ∅}. ∅M is the set of all elements of
DΘ which have been forced to be empty through the constraints ofthe modelM and∅
is the classical/universal empty set.S1(A) ≡ mMf (θ)(A), S2(A), S3(A) are defined
by

S1(A) ,
∑

X1,X2,...,Xk∈DΘ

(X1∩X2∩...∩Xk)=A

k
∏

i=1

mi(Xi) (5)

S2(A) ,
∑

X1,X2,...,Xk∈∅

[U=A]∨[(U∈∅)∧(A=It)]

k
∏

i=1

mi(Xi) (6)

S3(A) ,
∑

X1,X2,...,Xk∈DΘ

u(c(X1∩X2∩...∩Xk))=A
(X1∩X2∩...∩Xk)∈∅

k
∏

i=1

mi(Xi) (7)
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with U , u(X1) ∪ . . . ∪ u(Xk) whereu(X) is the union of allθi that composeX,
It , θ1 ∪ . . .∪ θn is the total ignorance, andc(X) is the canonical form5 of X, i.e. its
simplest form (for example ifX = (A ∩ B) ∩ (A ∪ B ∪ C), c(X) = A ∩ B). S1(A)
is nothing but the DSmC rule fork independent sources based onMf (Θ); S2(A) is
the mass of all relatively and absolutely empty sets which istransferred to the total
or relative ignorances associated with non existential constraints (if any, like in some
dynamic problems);S3(A) transfers the sum of relatively empty sets directly onto the
canonical disjunctive form of non-empty sets. DSmH generalizes DSmC and allows to
work on Shafer’s model. It is definitely not equivalent to Dempster’s rule since these
rules are different. DSmH works for any models (free DSm model, Shafer’s model
or any hybrid models) when manipulatingprecisebba. A recent report on DSmT
including MatLab6 codes can be found in [14].

Example for (DSmH)

Let’s consider the previous example withΘ = {θ1, θ2, θ3}, 0 < ǫ1, ǫ2 < 1, be two
positive numbers and two experts providing the quantitative and precise bbam1(θ1) =
1 − ǫ1, m1(θ2) = 0, m1(θ3) = ǫ1, m2(θ1) = 0, m2(θ2) = 1 − ǫ2 andm2(θ3) = ǫ2
and now assume that Shafer’s model holds, i.e. we assume thatθ1, θ2 andθ3 are truly
exclusive.

• based on (DSmH) fusion rule (4), on gets:

mDSmH(θ3) = ǫ1ǫ2

mDSmH(θ1 ∪ θ2) = (1 − ǫ1)(1 − ǫ2)

mDSmH(θ1 ∪ θ3) = (1 − ǫ1)ǫ2

mDSmH(θ2 ∪ θ3) = (1 − ǫ2)ǫ1

All other masses are zero. This result makes sense since it depends truly on the
values ofǫ1 andǫ2 contrariwise to Dempster’s rule according next item.

• using Dempster-Shafer’s (DS) rule of combination [29], onegets

mDS(θ3) =
(ǫ1ǫ2)

(1 − ǫ1) · 0 + 0 · (1 − ǫ2) + ǫ1ǫ2
= 1

5The canonical form is introduced here explicitly in order toimprove the original formula given in [30]
for preserving the neutral impact of the vacuous belief massm(Θ) = 1 within complex hybrid models.
Actually all propositions involved in formulas are expressed in their canonical form, i.e. conjunctive normal
form, also known as conjunction of disjunctions in Boolean algebra, which is unique.

6MatLab is a trademark of The MathWorks, Inc., U.S.A.
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which is absurd (or at least counter-intuitive). Note that whatever positive val-
ues forǫ1, ǫ2 are, Dempster’s rule givesalways the same result(one) which is
abnormal. The only acceptable and correct result obtained by Dempster’s rule is
really obtained only in the trivial case whenǫ1 = ǫ2 = 1, i.e. when both sources
agree inθ3 with certainty which is obvious.

Whenǫ1 = ǫ2 = 1/2, one otains

m1(θ1) = 1/2 m1(θ2) = 0 m1(θ3) = 1/2

m2(θ1) = 0 m2(θ2) = 1/2 m2(θ3) = 1/2

Dempster’s rule still yieldsmDS(θ3) = 1 while DSmH based on the same Shafer’s
model yields nowmDSmH(θ3) = 1/4, mDSmH(θ1∪θ2) = 1/4, mDSmH(θ1∪θ3) =
1/4, mDSmH(θ2 ∪ θ3) = 1/4 which is more acceptable upon authors opinion. A
detailed discussion on this example (and on more examples) with answers to recent
criticisms published in [15] can be found in [8].

Proportional Conflict Redistribution rule no 5 (PCR5)

Instead of applying a direct transfer of partial conflicts onto partial uncertainties as
with (DSmH), the idea behind the Proportional Conflict Redistribution (PCR) rule [31,
32] is to transfer (total or partial) conflicting masses to non-empty sets involved in
the conflicts proportionally with respect to the masses assigned to them by sources as
follows:

1. calculation the conjunctive rule of the belief masses of sources;

2. calculation the total or partial conflicting masses;

3. redistribution of the (total or partial) conflicting masses to the non-empty sets
involved in the conflicts proportionally with respect to their masses assigned by
the sources.

The way the conflicting mass is redistributed yields actually several versions of PCR
rules. These PCR fusion rules work for any degree of conflict,for any DSm mod-
els (Shafer’s model, free DSm model or any hybrid DSm model) and both in DST
and DSmT frameworks for static or dynamical fusion situations. We present here the
most achieved proportional conflict redistribution rule (rule no 5) denoted (PCR5) in
[31, 32]. PCR5 is what we think the most efficient PCR fusion rule for the combina-
tion of two sources. A more intuitive version of PCR5 fors >= 3 sources and denoted
PCR6 has been recently proposed by Martin and Osswald in [19]. (PCR6) coincides
with (PCR5) for the two-source case, but differs from (PCR5)when combining alto-
gether more than two sources.
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PCR5 rule redistributes the partial conflicting mass to the elements involved in the
partial conflict, considering the conjunctive normal form of the partial conflict. PCR5
is what we think the most interesting redistribution of conflicting mass to non-empty
sets following the logic of the conjunctive rule. (PCR5) does a better redistribution of
the conflicting mass than Dempster’s rule since (PCR5) goes backwards on the tracks
of the conjunctive rule and redistributes the conflicting mass only to the sets involved
in the conflict and proportionally to their masses put in the conflict. (PCR5) rule is
quasi-associative and preserves the neutral impact of the vacuous belief assignment
because in any partial conflict, as well in the total conflict (which is a sum of all partial
conflicts), the conjunctive normal form of each partial conflict does not includeΘ since
Θ is a neutral element for intersection (conflict), thereforeΘ gets no mass after the
redistribution of the conflicting mass. We have proved in [31] the continuity property
of the (PCR5) result with continuous variations of bba to combine. The general (PCR5)
formula fors ≥ 2 sources is given by [31]mPCR5(∅) = 0 and∀X ∈ G \ {∅}

mPCR5(X) = m12...s(X) +
∑

2≤t≤s
1≤r1,...,rt≤s

1≤r1<r2<...<rt−1<(rt=s)

∑

Xj2
,...,Xjt

∈G\{X}

{j2,...,jt}∈Pt−1({1,...,n})
c(X∩Xj2

∩...∩Xjs )=∅
{i1,...,is}∈Ps({1,...,s})

(
∏r1

k1=1 mik1
(X)2) · [

∏t

l=2(
∏rl

kl=rl−1+1 mikl
(Xjl

)]

(
∏r1

k1=1 mik1
(X)) + [

∑t

l=2(
∏rl

kl=rl−1+1 mikl
(Xjl

)]
(8)

whereG corresponds to classical power-set2Θ if Shafer’s model is used orG corre-
sponds to a constrained hyper-power setDΘ if any other hybrid DSm model is used
instead;i, j, k, r, s andt in (8) are integers.

m12...s(X) ≡ m∩(X) =
∑

X1,...,Xs∈G
X1∩...∩Xs=X

s
∏

i=1

mi(Xi)

corresponds to the conjunctive consensus onX betweens sources and where all de-
nominators are different from zero. If a denominator is zero, that fraction is discarded;
the set of all subsets ofk elements from{1, 2, . . . , n} (permutations ofn elements
taken byk) was denotedPk({1, 2, . . . , n}), the order of elements doesn’t count.c(X)
is the canonical form (conjunctive normal form) ofX.

Whens = 2 (fusion of only two sources), the previous (PCR5) formula reduces to
its simple following fusion formula:mPCR5(∅) = 0 and∀X ∈ G \ {∅}

mPCR5(X) = m12(X) +
∑

Y ∈G\{X}
c(X∩Y )=∅

[
m1(X)2m2(Y )

m1(X) + m2(Y )
+

m2(X)2m1(Y )

m2(X) + m1(Y )
] (9)
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For Θ = {θ1, θ2, . . . , θn} with Shafer’s model ands = 2 Bayesian equi-reliable
sources, i.e. when quantitative bbam1(.) andm2(.) reduce to subjective probability
measuresP1(.) andP2(.), it can be shown [31] after elementary algebraic derivations
that previous (PCR5) formula reduces to the following simple formula,PPCR5

12 (∅) = 0
and∀θi ∈ Θ,

PPCR5
12 (θi) = P1(θi)

n
∑

j=1

P1(θi)P2(θj)

P1(θi) + P2(θj)
+ P2(θi)

n
∑

j=1

P2(θi)P1(θj)

P2(θi) + P1(θj)

=
∑

s=1,2

Ps(θi)[
n

∑

j=1

Ps(θi)Ps′ 6=s(θj)

Ps(θi) + Ps′ 6=s(θj)
] (10)

It can be checked moreover thatPPCR5
12 (.) defines a subjective-combined proba-

bility measure satisfying all axioms of classical Probability Theory.

Examples for (PCR5)

• Example 1: Let’s takeΘ = {A,B} of exclusive elements (Shafer’s model), and
the following bba:

A B A ∪ B
m1(.) 0.6 0 0.4
m2(.) 0 0.3 0.7

m∩(.) 0.42 0.12 0.28

The conflicting mass isk12 = m∩(A∩B) = m1(A)m2(B)+m1(B)m2(A) =
0.18. ThereforeA andB are the only focal7 elements involved in the conflict.
Hence according to the (PCR5) hypothesis onlyA andB deserve a part of the
conflicting mass andA∪B does not deserve. With (PCR5), one redistributes the
conflicting massk12 = 0.18 to A andB proportionally with the massesm1(A)
andm2(B) assigned toA andB respectively. Letx be the conflicting mass to
be redistributed toA, andy the conflicting mass redistributed toB, then

x

0.6
=

y

0.3
=

x + y

0.6 + 0.3
=

0.18

0.9
= 0.2

hencex = 0.6 · 0.2 = 0.12, y = 0.3 · 0.2 = 0.06. Thus, the final result using the
(PCR5) rule is











mPCR5(A) = 0.42 + 0.12 = 0.54

mPCR5(B) = 0.12 + 0.06 = 0.18

mPCR5(A ∪ B) = 0.28

7a focal element is an element carrying strictly positive belief mass.
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For comparison, here are the results obtained from Dempster’s rule (DS), (DSmH)
and (PCR5):

A B A ∪ B
mDS 0.512 0.146 0.342
mDSmH 0.420 0.120 0.460
mPCR5 0.540 0.180 0.280

• Example 2: Let’s modify example 1 and consider

A B A ∪ B
m1(.) 0.6 0 0.4
m2(.) 0.2 0.3 0.5

m∩(.) 0.50 0.12 0.20

The conflicting massk12 = m∩(A ∩ B) as well as the distribution coefficients
for the (PCR5) remains the same as in the previous example butone gets now

A B A ∪ B
mDS 0.609 0.146 0.231
mDSmH 0.500 0.120 0.380
mPCR5 0.620 0.180 0.200

• Example 3: Let’s modify example 2 and consider

A B A ∪ B
m1(.) 0.6 0.3 0.1
m2(.) 0.2 0.3 0.5

m∩(.) 0.44 0.27 0.05

The conflicting massk12 = 0.24 = m1(A)m2(B) + m1(B)m2(A) = 0.24
is now different from previous examples, which means thatm2(A) = 0.2 and
m1(B) = 0.3 did make an impact on the conflict. ThereforeA andB are the
only focal elements involved in the conflict and thus onlyA andB deserve a
part of the conflicting mass. (PCR5) redistributes the partial conflicting mass
0.18 toA andB proportionally with the massesm1(A) andm2(B) and also the
partial conflicting mass 0.06 toA andB proportionally with the massesm2(A)
andm1(B). After all derivations (see [13] for details), one finally gets

A B A ∪ B
mDS 0.579 0.355 0.066
mDSmH 0.440 0.270 0.290
mPCR5 0.584 0.366 0.050
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One clearly sees thatmDS(A ∪ B) gets some mass from the conflicting mass
althoughA ∪ B does not deserve any part of the conflicting mass (according to
(PCR5) hypothesis) sinceA∪B is not involved in the conflict (onlyA andB are
involved in the conflicting mass). Dempster’s rule appears to us less exact than
(PCR5) and Inagaki’s rules [16]. It can be showed [13] that Inagaki’s fusion rule
[16] (with an optimal choice of tuning parameters) can become in some cases
very close to (PCR5) but upon our opinion (PCR5) result is more exact (at least
less ad-hoc than Inagaki’s one ).

• Example 4: Zadeh’s example [46, 47]

Let’s considerΘ = {M,C, T} as the frame of three potential origins about pos-
sible diseases of a patient (M standing formeningitis, C for concussionandT
for tumor), the Shafer’s model and the two following belief assignments pro-
vided by two independent doctors after examination of the same patient.

m1(M) = 0.9 m1(C) = 0 m1(T ) = 0.1

m2(M) = 0 m2(C) = 0.9 m2(T ) = 0.1

The total conflicting mass is high since it is

m1(M)m2(C) + m1(M)m2(T ) + m2(C)m1(T ) = 0.99

– with Dempster’s rule and Shafer’s model (DS), one gets the counter-intuitive
result (see justifications in [46, 10, 42, 37, 30] and criticism against them
in [15]): mDS(T ) = 1

– with Yager’s rule8 [42] and Shafer’s model:mY (M ∪ C ∪ T ) = 0.99 and
mY (T ) = 0.01

– with (DSmH) and Shafer’s model:

mDSmH(M ∪ C) = 0.81 mDSmH(T ) = 0.01

mDSmH(M ∪ T ) = mDSmH(C ∪ T ) = 0.09

– The Dubois & Prade’s rule (DP) [10] based on Shafer’s model provides in
Zadeh’s example the same result as (DSmH), because (DP) and (DSmH)
coincide in all static fusion problems9.

– with (PCR5) and Shafer’s model:

mPCR5(M) = mPCR5(C) = 0.486 mPCR5(T ) = 0.028

8Ronald Yager suggested in his rule to transfer the total conflicting mass to the total ignorance instead
using normalization as with Dempster’s rule.

9Indeed (DP) rule has been developed for static fusion only while (DSmH) has been developed to take
into account the possible dynamicity of the frame itself and also its associated model.
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One sees that when the total conflict between sources becomeshigh, DSmT is
able (upon authors opinion) to manage more adequately through either (DSmH)
or (PCR5) rules the combination of information than Dempster’s rule, even
when working with Shafer’s model - which is only a specific hybrid model.
(DSmH) rule is in agreement with (DP) rule for the static fusion, but (DSmH)
and (DP) rules differ in general (for non degenerate cases) for dynamic fusion
while (PCR5) rule seems more exact because of the proper proportional con-
flict redistribution of partial conflicts only to elements involved in the partial
conflicts. Besides this particular example, we showed in [30, 31] that there ex-
ist several infinite classes of counter-examples to Dempster’s rule which can be
solved by DSmT.

2.3 Combination of imprecise quantitative beliefs

When sources are unable to provide precise quantitative basic beliefs assignments (bba)
m(.), they can in some cases at least express their quantitative belief assignment on a
frame Θ in an imprecise manner asadmissible imprecisequantitative basic beliefs
assignmentsmI(.) whose values are real subunitary intervals of[0, 1], or even more
general as real subunitary sets (i.e. sets, not necessarilyintervals). In the general case,
these sets can be unions of (closed, open, or half-open/half-closed) intervals and/or
scalars all in[0, 1].

Definition of imprecise quantitative basic beliefs assignment

An imprecise quantitative bbamI(.) is mathematically defined asmI(.) : DΘ →
P([0, 1]) \ {∅} whereP([0, 1]) is the set of all subsets of the interval[0, 1]. mI(.) over
DΘ is saidadmissibleif and only if there exists for everyX ∈ DΘ at least one real
numberm(X) ∈ mI(X) such that

∑

X∈DΘ m(X) = 1. mI(.) is a normal extension
of m(.) from scalar values to set values. For example, if a sourcem(.) is not sure about
a scalar valuem(A) = 0.3, it may be considered an imprecise source which gives a set
value saymI(A) = [0.2, 0.4].

Operators on sets

The following simple commutative operators on sets (addition⊞ and multiplication�)
are required [30] for fusion of imprecise bba:

• Addition :

X1 ⊞ X2 , {x | x = x1 + x2, x1 ∈ X1, x2 ∈ X2} (11)

• Multiplication :

X1 � X2 , {x | x = x1 · x2, x1 ∈ X1, x2 ∈ X2} (12)



Jean Dezert and Florentin Smarandache 21

These operators are generalized for the summation and products ofn ≥ 2 sets as
follows

∑

k=1,...,n

Xk = {x | x =
∑

k=1,...,n

xk, x1 ∈ X1, . . . , xn ∈ Xn} (13)

∏

k=1,...,n

Xk = {x | x =
∏

k=1,...,n

xk, x1 ∈ X1, . . . , xn ∈ Xn} (14)

From these operators, one easily generalizes (DSmC) and (DSmH) fusion rules from
scalars to sets ([30] chap. 6) to obtain their imprecise counterparts. In order to extend
(PCR5) to its imprecise counterpart, i.e. (imp-PCR5) fusion rule, for dealing with im-
precise quantitative belief assignments, we need also to introduce the division operator
on sets as follows:

• Division (for the case when0 /∈ X2, inf(X2) 6= 0 andsup(X2) 6= 0):

X1 � X2 , {x | x = x1/x2, wherex1 ∈ X1, x2 ∈ X2} (15)

Operations with sets are associative and commutative similarly to operations with
numbers. Thus, fora, b, c, d, e, f ≥ 0 ande, f > 0, if one computes((a, b)� (c, d))�

(e, f) one gets

((a, b) � (c, d)) � (e, f) = (ac, bd) � (e, f) = (ac/f, bd/e)

and we get the same result if we compute(a, b) � ((c, d) � (e, f)) because

(a, b) � ((c, d) � (e, f)) = (a, b) � (c/f, d/e) = (ac/f, bd/e)

In our next examples we always prefer to compute the divisions at the end since they
often don’t give exact values but approximations; and earlyapproximations in calcula-
tions will grow in inacuracy.

Imprecise Classic DSm fusion rule (imp-DSmC)

The Imprecise Classic DSm fusion rule (imp-DSmC) which extends the Classic DSm
fusion rule (DSmC) for combining imprecise (admissible) quantitative basic belief as-
signments is given fork ≥ 2 sources bymI

DSmC(∅) = 0 and∀A 6= ∅ ∈ DΘ,

mI
DSmC(A) =

∑

X1,X2,...,Xk∈DΘ

(X1∩X2∩...∩Xk)=A

∏

i=1,...,k

mI
i (Xi) (16)
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Imprecise Hybrid DSm fusion rule (imp-DSmH)

Similarly, one can generalize (DSmH) from scalars to sets for the combination ofk ≥ 2
sources bymI

DSmH(∅) = 0 and∀A 6= ∅ ∈ DΘ,

mI
DSmH(A) , φ(A) �

[

SI
1 (A) ⊞ SI

2 (A) ⊞ SI
3 (A)

]

(17)

with

SI
1 (A) ,

∑

X1,X2,...,Xk∈DΘ

(X1∩X2∩...∩Xk)=A

∏

i=1,...,k

mI
i (Xi) (18)

SI
2 (A) ,

∑

X1,X2,...,Xk∈∅
[U=A]∨[(U∈∅)∧(A=It)]

∏

i=1,...,k

mI
i (Xi) (19)

SI
3 (A) ,

∑

X1,X2,...,Xk∈DΘ

u(c(X1∩X2∩...∩Xk))=A

(X1∩X2∩...∩Xk)∈∅

∏

i=1,...,k

mI
i (Xi) (20)

These (imp-DSmC) and (imp-DSmH) fusion rules are just natural extensions of (DSmC)
and (DSmH) from scalar-valued to set-valued sources of information. It has been
proved that (16) and (17) provide an admissible imprecise belief assignment (see the
Theorem of Admissibility and its proof in Ch.6, p. 138, of [30]). In other words, DSm
combinations of two admissible imprecise bba is also an admissible imprecise bba. As
their precise counterparts, the imprecise DSm combinationrules arequasi-associative,
i.e. one stores in the computer’s memory the conjunctive rule’s result and, when new
evidence comes in, this new evidence is combined with the conjunctive rule result. In
this way the associativity is preserved.

Imprecise PCR5 fusion rule (imp-PCR5)

The (imp-PCR5) formula is a direct extension of (PCR5) formula using addition, mul-
tiplication and division operators on sets. It is given for the combination ofs ≥ 2
sources bymI

PCR5(∅) = 0 and∀X ∈ G \ {∅}:
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mI
PCR5(X) =

[

∑

X1,X2,...,Xs∈G
(X1∩X2∩...∩Xs)=X

∏

i=1,...,s

mI
i (Xi)

]

⊞
[

∑

2≤t≤s
1≤r1,...,rt≤s

1≤r1<r2<...<rt−1<(rt=s)

∑

Xj2
,...,Xjt

∈G\{X}
{j2,...,jt}∈Pt−1({1,...,n})

c(X∩Xj2
∩...∩Xjs )=∅

{i1,...,is}∈Ps({1,...,s})

[NumI(X) � DenI(X)]
]

(21)

whereNumI(X) andDenI(X) are defined by

NumI(X) ,
[

∏

k1=1,...,r1

mI
ik1

(X)2
]

�

[

∏

l=2,...,t

(
∏

kl=rl−1+1,...,rl

mI
ikl

(Xjl
)
]

(22)

DenI(X) ,
[

∏

k1=1,...,r1

mI
ik1

(X)
]

⊞
[

∑

l=2,...,t

(
∏

kl=rl−1+1,...,rl

mI
ikl

(Xjl
)
]

(23)

where all denominators-setsDenI(X) involved in (21) are different from zero. If
a denominator-setDenI(X) is such thatinf(DenI(X)) = 0, then the fraction is
discarded. Whens = 2 (fusion of only two sources), the previous (imp-PCR5) formula
reduces to its simple following fusion formula:mI

PCR5(∅) = 0 and∀X ∈ G \ {∅}

mI
PCR5(X) = mI

12(X)+
∑

Y ∈G\{X}
c(X∩Y )=∅

[(mI
1(X)2mI

2(Y )) � (mI
1(X) + mI

2(Y ))]⊞

[(mI
2(X)2mI

1(Y )) � (mI
2(X) + mI

1(Y ))] (24)

with

mI
12(X) ,

∑

X1,X2∈G
X1∩X2=X

mI
1(X1) � mI

2(X2)
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A ∈ DΘ mI
1(A) mI

2(A)
θ1 [0.1, 0.2] ∪ {0.3} [0.4, 0.5]
θ2 (0.4, 0.6) ∪ [0.7, 0.8] [0, 0.4] ∪ {0.5, 0.6}

Table 1: Inputs of the fusion with imprecise bba

Example for (imp-DSmC)

Let’s considerΘ = {θ1, θ2}, two independent sources with the following imprecise
admissible bba:
Using (imp-DSmC), i.e. the DSm classic rule for sets, one gets10

mI
DSmC(θ1) = ([0.1, 0.2] ∪ {0.3}) � [0.4, 0.5]

= ([0.1, 0.2] � [0.4, 0.5]) ∪ ({0.3} � [0.4, 0.5])

= [0.04, 0.10] ∪ [0.12, 0.15]

mI
DSmC(θ2) = ((0.4, 0.6) ∪ [0.7, 0.8]) � ([0, 0.4] ∪ {0.5, 0.6})

= [0, 0.40] ∪ [0.42, 0.48]

mI
DSmC(θ1 ∩ θ2) = [([0.1, 0.2] ∪ {0.3}) � ([0, 0.4] ∪ {0.5, 0.6})]

⊞ [[0.4, 0.5] � ((0.4, 0.6) ∪ [0.7, 0.8])]

= (0.16, 0.58]

Hence finally the fusion admissible result is given by:

A ∈ DΘ mI
DSmC(A) = [mI

1 ⊕ mI
2](A)

θ1 [0.04, 0.10] ∪ [0.12, 0.15]
θ2 [0, 0.40] ∪ [0.42, 0.48]

θ1 ∩ θ2 (0.16, 0.58]
θ1 ∪ θ2 0

Table 2: Fusion result with (imp-DSmC)

Example for (imp-DSmH)

If one finds out11 that θ1 ∩ θ2
M
≡ ∅ (this is our hybrid modelM one wants to deal

with), then one uses the imprecise hybrid DSm rule (imp-DSmH) for sets (17) and

10A complete derivation of this reslut can be found in [30] pp. 139-140.
11We consider now a dynamic/temporal fusion problem.
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therefore the imprecise belief massmI
DSmC(θ1 ∩ θ2) = (0.16, 0.58] is then directly

transferred ontoθ1 ∪ θ2 and the others imprecise masses are not changed. Finally, the
result obtained with (imp-DSmH) rule is given in Table 3.

A ∈ DΘ mI
DSmH(A) = [mI

1 ⊕ mI
2](A)

θ1 [0.04, 0.10] ∪ [0.12, 0.15]
θ2 [0, 0.40] ∪ [0.42, 0.48]

θ1 ∩ θ2
M
≡ ∅ 0

θ1 ∪ θ2 (0.16, 0.58]

Table 3: Fusion result with (imp-DSmH) forM(Θ)

We can easily check that for the source 1, there exist the precise masses(m1(θ1) =
0.3) ∈ ([0.1, 0.2] ∪ {0.3}) and(m1(θ2) = 0.7) ∈ ((0.4, 0.6) ∪ [0.7, 0.8]) such that
0.3 + 0.7 = 1 and for the source 2, there exist the precise masses(m1(θ1) = 0.4) ∈
([0.4, 0.5]) and(m2(θ2) = 0.6) ∈ ([0, 0.4]∪{0.5, 0.6}) such that0.4+0.6 = 1. There-
fore both sources associated withmI

1(.) andmI
2(.) are admissible imprecise sources

of information. It can be easily checked that DSmC yields theparadoxical basic belief
assignmentmDSmC(θ1) = [m1 ⊕m2](θ1) = 0.12, mDSmC(θ2) = [m1 ⊕m2](θ2) =
0.42 andmDSmC(θ1 ∩ θ2) = [m1 ⊕ m2](θ1 ∩ θ2) = 0.46. One sees from Table 2
that the admissibility is satisfied since there exists at least a bba (heremDSmC(.)) with
(mDSmC(θ1) = 0.12) ∈ mI

DSmC(θ1), (mDSmC(θ2) = 0.42) ∈ mI
DSmC(θ2) and

(mDSmC(θ1 ∩ θ2) = 0.46) ∈ mI
DSmC(θ1 ∩ θ2 such that0.12 + 0.42 + 0.46 = 1.

Similarly if one finds out thatθ1 ∩ θ2 = ∅, then one uses DSmH and one gets:
mDSmH(θ1 ∩ θ2) = 0 andmDSmH(θ1 ∪ θ2) = 0.46; the others remain unchanged.
The admissibility still holds, because one can pick at leastone number in each subset
mI

DSmH(.) such that the sum of these numbers is 1. This approach can be also used
in the similar manner to obtain imprecise pignistic probabilities from mI

DSmH(.) for
decision-making under quantitative uncertain, paradoxical and imprecise sources of
information as well [30, 5].

Examples for (imp-PCR5)

Example no 1:

Let’s considerΘ = {θ1, θ2}, Shafer’s model and two independent sources with the
same imprecise admissible bba as those given in Table 1, i.e.

Working with sets, one gets for the conjunctive consensus

mI
12(θ1) = [0.04, 0.10] ∪ [0.12, 0.15] mI

12(θ2) = [0, 0.40] ∪ [0.42, 0.48]
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mI
1(θ1) = [0.1, 0.2] ∪ {0.3} mI

1(θ2) = (0.4, 0.6) ∪ [0.7, 0.8]
mI

2(θ1) = [0.4, 0.5] mI
2(θ2) = [0, 0.4] ∪ {0.5, 0.6}

while the conflicting imprecise mass is given by

kI
12 ≡ mI

12(θ1 ∩ θ2) = [mI
1(θ1) � mI

2(θ2)] ⊞ [mI
1(θ2) � mI

2(θ1)] = (0.16, 0.58]

Using the PCR5 rule for Proportional Conflict redistribution,

• one redistributes the partial imprecise conflicting massmI
1(θ1) � mI

2(θ2) to θ1

and θ2 proportionally tomI
1(θ1) andmI

2(θ2). Using the fraction bar symbol
instead of� for convenience to denote the division operator on sets, onehas

xI
1

[0.1, 0.2] ∪ {0.3}
=

yI
1

[0, 0.4] ∪ {0.5, 0.6}

=
([0.1, 0.2] ∪ {0.3}) � ([0, 0.4] ∪ {0.5, 0.6})

([0.1, 0.2] ∪ {0.3}) ⊞ ([0, 0.4] ∪ {0.5, 0.6})

=
[

[0, 0.08] ∪ [0.05, 0.10] ∪ [0.06, 0.12]

∪ [0, 0.12] ∪ {0.15, 0.18}
]

�

[

[0.1, 0.6] ∪ [0.6, 0.7] ∪ [0.7, 0.8]

∪ [0.3, 0.7] ∪ {0.8, 0.9}
]

=
[0, 0.12] ∪ {0.15, 0.18}

[0.1, 0.8] ∪ {0.9}

whence

xI
1 = [

[0, 0.12] ∪ {0.15, 0.18}

[0.1, 0.8] ∪ {0.9}
] � ([0.1, 0.2] ∪ {0.3})

=
[0, 0.024] ∪ [0.015, 0.030] ∪ [0.018, 0.036] ∪ [0, 0.036] ∪ {0.045, 0.048}

[0.1, 0.8] ∪ {0.9}

=
[0, 0.036] ∪ {0.045, 0.048}

[0.1, 0.8] ∪ {0.9}

= [
0

0.8
,
0.036

0.1
] ∪ [

0

0.9
,
0.036

0.9
] ∪ [

0.045

0.8
,
0.045

0.1
] ∪ [

0.048

0.8
,
0.048

0.1
]

= [0, 0.36] ∪ [0, 0.04] ∪ [0.05625, 0.45000] ∪ [0.06, 0.48] = [0, 0.48]
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yI
1 = [

[0, 0.12] ∪ {0.15, 0.18}

[0.1, 0.8] ∪ {0.9}
] � (0, 0.4] ∪ {0.5, 0.6})

=
[

[0, 0.048] ∪ [0, 0.060] ∪ [0, 0.072] ∪ [0, 0.6] ∪ [0, 0.072]

∪ {0, 075, 0.090, 0.090, 0.108}
]

� [0.1, 0.8] ∪ {0.9}

=
[0, 0.072] ∪ {0, 075, 0.090, 0.108}

[0.1, 0.8] ∪ {0.9}

= [
0

0.8
,
0.072

0.1
] ∪ [

0

0.9
,
0.072

0.9
] ∪ [

0.075

0.8
,
0.075

0.1
]

∪ [
0.090

0.8
,
0.090

0.1
] ∪ [

0.108

0.8
,
0.108

0.1
] ∪ {

0.075

0.9
,
0.090

0.9
,
0.108

0.9
}

= [0, 0.72] ∪ [0, 0.08] ∪ [0.09375, 0.75] ∪ [0.1125, 0.9] ∪ [0.135, 1.08]

∪ {0.083333, 0.1, 0.12}

= [0, 1.08] ≈ [0, 1]

• one redistributes the partial imprecise conflicting massmI
1(θ2) � mI

2(θ1) to θ1

andθ2 proportionally tomI
1(θ2) andmI

2(θ1). One gets now the following pro-
portionalization

xI
2

[0.4, 0.5]
=

yI
2

(0.4, 0.6) ∪ [0.7, 0.8]

=
([0.4, 0.5] � ((0.4, 0.6) ∪ [0.7, 0.8])

([0.4, 0.5] ⊞ ((0.4, 0.6) ∪ [0.7, 0.8])

=
(0.16, 0.30) ∪ [0.28, 0.40]

(0.8, 1.1) ∪ [1.1, 1.3]
=

(0.16, 0.40]

(0.8, 1.3]

whence

xI
2 =

(0.16, 0.40]

(0.8, 1.3]
� [0.4, 0.5]

=
(0.064, 0.200]

(0.8, 1.3]

= (
0.064

1.3
,
0.200

0.8
) = (0.049231, 0.250000)
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yI
2 =

(0.16, 0.40]

(0.8, 1.3]
� (0.4, 0.6) ∪ [0.7, 0.8]

=
(0.064, 0.240) ∪ (0.112, 0.320]

(0.8, 1.3]

=
(0.064, 0.320]

(0.8, 1.3]
= (

0.064

1.3
,
0.320

0.8
)

= (0.049231, 0.400000)

Hence, one finally gets with imprecise PCR5,

mI
PCR5(θ1) = mI

12(θ1) ⊞ xI
1 ⊞ xI

2

= ([0.04, 0.10] ∪ [0.12, 0.15]) ⊞ [0, 0.48] ⊞ (0.049231, 0.250000)

= ([0.04, 0.10] ∪ [0.12, 0.15]) ⊞ (0.049231, 0.73)

= (0.089231, 0.83) ∪ (0.169231, 0.88)

= (0.089231, 0.88)

mI
PCR5(θ2) = mI

12(θ2) ⊞ yI
1 ⊞ yI

2

= ([0, 0.40] ∪ [0.42, 0.48]) ⊞ [0, 1] ⊞ (0.049231, 0.400000) ≈ [0, 1]

mI
PCR5(θ1 ∩ θ2) = 0

Example no 2:

Let’s consider a more simple example withΘ = {θ1, θ2}, Shafer’s model and two
independent sources with the following imprecise admissible bba

mI
1(θ1) = (0.2, 0.3) mI

1(θ2) = [0.6, 0.8]
mI

2(θ1) = [0.4, 0.7) mI
2(θ2) = (0.5, 0.6]

Working with sets, one gets for the conjunctive consensus

mI
12(θ1) = (0.08, 0.21) mI

12(θ2) = (0.30, 0.48)

The total (imprecise) conflict between the two imprecise quantitative sources is given
by

kI
12 ≡ mI

12(θ1 ∩ θ2) = [mI
1(θ1) � mI

2(θ2)] ⊞ [mI
1(θ2) � mI

2(θ1)]

= ((0.2, 0.3) � (0.5, 0.6]) ⊞ ([0.4, 0.7] � [0.6, 0.8])

= (0.10, 0.18) ⊞ [0.24, 0.56) = (0.34, 0.74)



Jean Dezert and Florentin Smarandache 29

Using the PCR5 rule for Proportional Conflict redistribution of partial (imprecise) con-
flict mI

1(θ1) � mI
2(θ2), one has

xI
1

(0.2, 0.3)
=

yI
1

(0.5, 0.6]
=

(0.2, 0.3) � (0.5, 0.6]

(0.2, 0.3) ⊞ (0.5, 0.6]
=

(0.10, 0.18)

(0.7, 0.9)

whence

xI
1 =

(0.10, 0.18)

(0.7, 0.9)
� (0.2, 0.3)

=
(0.02, 0.054)

(0.7, 0.9)

= (
0.02

0.9
,
0.054

0.7
)

= (0.022222, 0.077143)

yI
1 =

(0.10, 0.18)

(0.7, 0.9)
� (0.5, 0.6]

=
(0.050, 0.108)

(0.7, 0.9)

= (
0.050

0.9
,
0.108

0.7
)

= (0.055556, 0.154286)

Using the PCR5 rule for Proportional Conflict redistribution of partial (imprecise)
conflictmI

1(θ2) � mI
2(θ1), one has

xI
2

[0.4, 0.7)
=

yI
2

[0.6, 0.8]
=

[0.4, 0.7) � [0.6, 0.8]

[0.4, 0.7) ⊞ [0.6, 0.8]
=

[0.24, 0.56)

[1, 1.5)

whence

xI
2 =

[0.24, 0.56)

[1, 1.5)
� [0.4, 0.7) =

[0.096, 0.392)

[1, 1.5)
= (

0.096

1.5
,
0.392

1
) = (0.064, 0.392)

yI
2 =

[0.24, 0.56)

[1, 1.5)
� [0.6, 0.8] =

[0.144, 0.448)

[1, 1.5)
= (

0.144

1.5
,
0.448

1
) = (0.096, 0.448)

Hence, one finally gets with imprecise PCR5,
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mI
PCR5(θ1) = mI

12(θ1) ⊞ xI
1 ⊞ xI

2

= (0.08, 0.21) ⊞ (0.022222, 0.077143) ⊞ (0.064, 0.392)

= (0.166222, 0.679143)

mI
PCR5(θ2) = mI

12(θ2) ⊞ yI
1 ⊞ yI

2

= (0.30, 0.48) ⊞ (0.055556, 0.154286) ⊞ (0.096, 0.448)

= (0.451556, 1.08229) ≈ (0.451556, 1]

mI
PCR5(θ1 ∩ θ2) = 0

3 Fusion of qualitative beliefs

Different qualitative methods for reasoning under uncertainty have been developed
mainly in Artificial Intelligence since the last decades. They attract more and more
people of Information Fusion community, specially those working in the development
of modern multi-source12 systems for defense. George Polya was the first mathe-
matician to attempt a formal characterization of qualitative human reasoning in 1954
[27], then followed by Lofti Zadeh’s works [44]-[51]. The interest of qualitative rea-
soning methods is to help in decision-making for situationsin which the precise nu-
merical methods are not appropriate (whenever the information/input are not directly
expressed in numbers). Several formalisms for qualitativereasoning have been pro-
posed as extensions on the frames of probability, possibility and/or evidence theories
[1, 11, 4, 40, 17, 48, 51, 43]. The limitations of numerical techniques are discussed in
[23]. Our purpose here is not to browse and to write a survey onall techniques dealing
with qualitative information, but only to mention briefly the main attempts for solving
the combination problem. A good presentation of these techniques can be found in
Parsons’ milestone book [25]. Among all available techniques, one must however give
credit to Wellman’s works [39] who proposed a general characterization of ”qualitative
probability” to relax precision in representation and reasoning within the probabilistic
framework. His ”qualitative” Probabilistic Networks (QPN) based on a Qualitative
Probability Language (QPL) defined by a set of numerical underlying probability dis-
tributions belongs actually to the family of imprecise probability [38] and probability
bounds analysis (PBA) methods [12] and cannot be consideredtruly as a qualitative
approach since it deals with quantitative (imprecise) probability distributions. Based
on Dempster-Shafer Theory, Wong and Lingras [41] proposed amethod for generat-
ing a (numerical) basic belief function from preference relations between each pair of
propositions specified qualitatively. Their method doesn’t provide however a unique
solution and doesn’t check the consistency of qualitative preference relations and can-
not be truly considered as a full qualitative method. Brysonet al. [3, 20] proposed

12Where both computers, sensors and human experts are involved inthe loop.
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a Qualitative Discriminant Procedure (QDP) that involves qualitative scoring, impre-
cise pairwise comparisons between pairs of propositions and an optimization algorithm
to generate consistent imprecise quantitative belief function to combine. In [21, 22],
Parsons proposed for the first time (upon the knowledge of theauthors) a qualitative
Dempster-Shafer Theory (QET), by using techniques from qualitative reasoning [1].
Based on operation tables, he introduced a very simple arithmetic for qualitative ad-
dition + and multiplication× operators. Because of impossibility of qualitative nor-
malization, Parsons used the un-normalized version of Dempster’s rule by committing
a qualitative massto the empty set following the open-world approach of Smets [35].
This approach cannot deal however with truly closed-world problems because there
is unfortunately no issue to transfer the conflicting qualitative mass or to normalize
the qualitative belief assignments in the spirit of DST. Since 1998, Parsons started to
develop Qualitative Probabilistic Reasoner (QPR) [24, 26]. Since middle of nineties,
Lofti Zadeh has proposed a new paradigm of computing with words (CW) [48]-[51]
to combine qualitative/vague information expressed in natural language. CW is done
essentially in three major steps: 1) a translation of qualitative information into fuzzy
membership functions, 2) a fuzzy combination of fuzzy membership functions; 3) a
retranslation of fuzzy (quantitative) result into naturallanguage. All these steps cannot
be uniquely accomplished since they depend on the fuzzy operators chosen. A possible
issue for the third step is proposed in [43].

In this section we propose a simple arithmetic of linguisticlabels which allows a
direct extension of classical (quantitative) combinationrules proposed in the DSmT
framework into their qualitative counterpart. Qualitative beliefs assignments are well
adapted for manipulated information expressed in natural language and usually re-
ported by human expert or AI-based expert systems. In other words, we propose here
a new method for computing directly with words (CW) and combining directly qual-
itative information Computing with words, more precisely computing with linguistic
labels, is usually more vague, less precise than computing with numbers, but it is ex-
pected to offer a better robustness and flexibility for combining uncertain and con-
flicting human reports than computing with numbers because in most of cases human
experts are less efficient to provide (and to justify) precise quantitative beliefs than
qualitative beliefs. Before extending the quantitative DSmT-based combination rules
to their qualitative counterparts, it will be necessary to define few but new important
operators on linguistic labels and what is a qualitative belief assignment. Then we
will show though simple examples how the combination of qualitative beliefs can be
obtained in the DSmT framework.

3.1 Qualitative Operators

Let’s define a finite set of linguistic labels̃L = {L1, L2, . . . , Lm} wherem ≥ 2 is an
integer.L̃ is endowed with a total order relationship≺, so thatL1 ≺ L2 ≺ . . . ≺ Lm.
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To work on a close linguistic set under linguistic addition and multiplication operators,
we extendsL̃ with two extreme valuesL0 andLm+1 whereL0 corresponds to the
minimal qualitative value andLm+1 corresponds to the maximal qualitative value, in
such a way that

L0 ≺ L1 ≺ L2 ≺ . . . ≺ Lm ≺ Lm+1

where≺ means inferior to, or less (in quality) than, or smaller (in quality) than, etc.
hence a relation of order from a qualitative point of view. But if we make a corre-
spondence between qualitative labels and quantitative values on the scale[0, 1], then
Lmin = L0 would correspond to the numerical value 0, whileLmax = Lm+1 would
correspond to the numerical value 1, and eachLi would belong to[0, 1], i. e.

Lmin = L0 < L1 < L2 < . . . < Lm < Lm+1 = Lmax

From now on, we work on extended ordered setL of qualitative values

L = {L0, L̃, Lm+1} = {L0, L1, L2, . . . , Lm, Lm+1}

The qualitative addition and multiplication operators arerespectively defined in the
following way:

• Addition :

Li + Lj =

{

Li+j , if i + j ≤ m + 1,

Lm+1, if i + j > m + 1.
(25)

• Multiplication :
Li × Lj = Lmin{i,j} (26)

These two operators are well-defined, commutative, associative, and unitary. Addi-
tion of labels is a unitary operation sinceL0 = Lmin is the unitary element, i.e.
Li + L0 = L0 + Li = Li+0 = Li for all 0 ≤ i ≤ m + 1. Multiplication of
labels is also a unitary operation sinceLm+1 = Lmax is the unitary element, i.e.
Li ×Lm+1 = Lm+1 ×Li = Lmin{i,m+1} = Li for 0 ≤ i ≤ m+1. L0 is the unit ele-
ment for addition, whileLm+1 is the unit element for multiplication.L is closed under
+ and×. The mathematical structure formed by(L,+,×) is a commutative bisemi-
group with different unitary elements for each operation. We recall that a bisemigroup
is a setS endowed with two associative binary operations such thatS is closed under
both operations.

If L is not an exhaustive set of qualitative labels, then other labels may exist in
between the initial ones, so we can work with labels and numbers - since a refinement
of L is possible. When mapping fromL to crisp numbers or intervals,L0 = 0 and
Lm+1 = 1, while 0 < Li < 1, for all i, as crisp numbers, orLi included in[0, 1] as
intervals/subsets.
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For example,L1, L2, L3 andL4 may represent the following qualitative values:
L1 , very poor,L2 , poor,L3 , good andL4 , very good where, symbol means
”by definition”.

We think it is better to define the multiplication× of Li ×Lj by Lmin{i,j} because
multiplying two numbersa and b in [0, 1] one gets a result which is less than each
of them, the product is not bigger than both of them as Bolanoset al. did in [2] by
approximatingLi × Lj = Li+j > max{Li, Lj}. While for the addition it is the
opposite: adding two numbers in the interval[0, 1] the sum should be bigger than both
of them, not smaller as in [2] case whereLi + Lj = min{Li, Lj} < max{Li, Lj}.

3.2 Qualitative Belief Assignment

We define a qualitative belief assignment (qba), and we call it qualitative belief mass
or q-massfor short, a mapping function

qm(.) : G 7→ L

whereG corresponds the space of propositions generated with∩ and∪ operators and
elements ofΘ taking into account the integrity constraints of the model.For example
if Shafer’s model is chosen forΘ, thenG is nothing but the classical power set2Θ

[29], whereas if free DSm model is adoptedG will correspond to Dedekind’s lattice
(hyper-power set)DΘ [30]. Note that in this qualitative framework, there is no way
to define normalizedqm(.), but qualitative quasi-normalization is still possible asseen
further. Using the qualitative operations defined previously we can easily extend the
combination rules from quantitative to qualitative. In thesequel we will considers ≥ 2
qualitative belief assignmentsqm1(.), . . . , qms(.) defined over the same spaceG and
provided bys independent sourcesS1, . . . , Ss of evidence.

Important note : The addition and multiplication operators used in all qualitative fu-
sion formulas in next sections correspond toqualitative additionandqualitative mul-
tiplication operators defined in (25) and (26) and must not be confused with classical
addition and multiplication operators for numbers.

3.3 Qualitative Conjunctive Rule (qCR)

The qualitative Conjunctive Rule (qCR) ofs ≥ 2 sources is defined similarly to the
quantitative conjunctive consensus rule, i.e.

qmqCR(X) =
∑

X1,...,Xs∈G
X1∩...∩Xs=X

s
∏

i=1

qmi(Xi) (27)
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The total qualitative conflicting mass is given by

K1...s =
∑

X1,...,Xs∈G
X1∩...∩Xs=∅

s
∏

i=1

qmi(Xi)

3.4 Qualitative DSm Classic rule (q-DSmC)

The qualitative DSm Classic rule (qDSmC) fors ≥ 2 is defined similarly to DSm
Classic fusion rule (DSmC) as follows :qmqDSmC(∅) = L0 and for allX ∈ DΘ\{∅},

qmqDSmC(X) =
∑

X1,,...,Xs∈DΘ

X1∩...∩Xs=X

s
∏

i=1

qmi(Xi) (28)

3.5 Qualitative DSm Hybrid rule (q-DSmH)

The qualitative DSm Hybrid rule (qDSmH) is defined similarlyto quantitative DSm
hybrid rule [30] as follows:qmqDSmH(∅) = L0 and for allX ∈ G \ {∅}

qmqDSmH(X) , φ(X) ·
[

qS1(X) + qS2(X) + qS3(X)
]

(29)

whereφ(X) is thecharacteristic non-emptiness functionof a setX, i.e.φ(X) = Lm+1

if X /∈ ∅ andφ(X) = L0 otherwise, where∅ , {∅M, ∅}. ∅M is the set of all elements
of DΘ which have been forced to be empty through the constraints ofthe modelM and
∅ is the classical/universal empty set.qS1(X) ≡ qmqDSmC(X), qS2(X), qS3(X) are
defined by

qS1(X) ,
∑

X1,X2,...,Xs∈DΘ

(X1∩X2∩...∩Xs)=X

s
∏

i=1

qmi(Xi) (30)

qS2(X) ,
∑

X1,X2,...,Xs∈∅

[U=X]∨[(U∈∅)∧(X=It)]

s
∏

i=1

qmi(Xi) (31)

qS3(X) ,
∑

X1,X2,...,Xk∈DΘ

u(c(X1∩X2∩...∩Xs))=X
(X1∩X2∩...∩Xs)∈∅

s
∏

i=1

qmi(Xi) (32)

with U , u(X1) ∪ . . . ∪ u(Xs) whereu(X) is the union of allθi that composeX,
It , θ1 ∪ . . . ∪ θn is the total ignorance, andc(X) is the canonical form ofX, i.e. its
simplest form (for example ifX = (A∩B)∩ (A∪B ∪C), c(X) = A∩B). qS1(X)
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is nothing but the qDSmC rule fors independent sources based onMf (Θ); qS2(X) is
the qualitative mass of all relatively and absolutely emptysets which is transferred to
the total or relative ignorances associated with non existential constraints (if any, like
in some dynamic problems);qS3(X) transfers the sum of relatively empty sets directly
onto the canonical disjunctive form of non-empty sets. qDSmH generalizes qDSmC
works for any models (free DSm model, Shafer’s model or any hybrid models) when
manipulating qualitative belief assignments.

3.6 Qualitative PCR5 rule (q-PCR5)

In classical/quantitative DSmT framework, the Proportional Conflict Redistribution
rule no. 5 (PCR5) has been proven to provide very good and coherent results for com-
bining (quantitative) belief masses [32, 19, 9]. When dealing with qualitative beliefs
and using Dempster-Shafer Theory (DST), we unfortunately can not normalize, since
it is not possible to divide linguistic labels by linguisticlabels. Previous authors have
used the un-normalized Dempster’s rule, which actually is equivalent to the Conjunc-
tive Rule in Shafer’s model and respectively to DSm conjunctive rule in hybrid and
free DSm models. Following the idea of (quantitative) PCR5 fusion rule (9), we can
however use a rough approximation for a qualitative versionof PCR5 (denoted qPCR5)
as it will be presented in next example, but we did not succeedso far to get a general
formula for qualitative PCR5 fusion rule (q-PCR5) because the division of labels could
not be defined.

3.7 Example

Let’s consider the following set of ordered linguistic labelsL = {L0, L1, L2, L3, L4, L5}
(for example,L1, L2, L3 andL4 may represent the values:L1 , very poor, L2 ,

poor, L3 , goodandL4 , very good, where, symbol meansby definition), then
addition and multiplication tables are

+ L0 L1 L2 L3 L4 L5

L0 L0 L1 L2 L3 L4 L5

L1 L1 L2 L3 L4 L5 L5

L2 L2 L3 L4 L5 L5 L5

L3 L3 L4 L5 L5 L5 L5

L4 L4 L5 L5 L5 L5 L5

L5 L5 L5 L5 L5 L5 L5

Table 4: Addition table

Let’s consider now a simple two-source case with a 2D frameΘ = {θ1, θ2},
Shafer’s model forΘ, and qba’s expressed as follows:

qm1(θ1) = L1, qm1(θ2) = L3, qm1(θ1 ∪ θ2) = L1
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× L0 L1 L2 L3 L4 L5

L0 L0 L0 L0 L0 L0 L0

L1 L0 L1 L1 L1 L1 L1

L2 L0 L1 L2 L2 L2 L2

L3 L0 L1 L2 L3 L3 L3

L4 L0 L1 L2 L3 L4 L4

L5 L0 L1 L2 L3 L4 L5

Table 5: Multiplication table

qm2(θ1) = L2, qm2(θ2) = L1, qm2(θ1 ∪ θ2) = L2

• Fusion with (qCR): According to qCR combination rule (27), one gets the result
in Table 6, since

qmqCR(θ1) = qm1(θ1)qm2(θ1) + qm1(θ1)qm2(θ1 ∪ θ2)

+ qm2(θ1)qm1(θ1 ∪ θ2)

= (L1 × L2) + (L1 × L2) + (L2 × L1)

= L1 + L1 + L1 = L1+1+1 = L3

qmqCR(θ2) = qm1(θ2)qm2(θ2) + qm1(θ2)qm2(θ1 ∪ θ2)

+ qm2(θ2)qm1(θ1 ∪ θ2)

= (L3 × L1) + (L3 × L2) + (L1 × L1)

= L1 + L2 + L1 = L1+2+1 = L4

qmqCR(θ1 ∪ θ2) = qm1(θ1 ∪ θ2)qm2(θ1 ∪ θ2) = L1 × L2 = L1

qmqCR(∅) , K12 = qm1(θ1)qm2(θ2) + qm1(θ2)qm2(θ1)

= (L1 × L1) + (L2 × L3) = L1 + L2 = L3

In summary, one gets

• Fusion with (qDSmC): If we accepts the free-DSm model instead Shafer’s
model, according to qDSmC combination rule (28), one gets the result in Ta-
ble 7,
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θ1 θ2 θ1 ∪ θ2 ∅ θ1 ∩ θ2

qm1(.) L1 L3 L1

qm2(.) L2 L1 L2

qmqCR(.) L3 L4 L1 L3 L0

Table 6: Fusion with qCR

θ1 θ2 θ1 ∪ θ2 ∅ θ1 ∩ θ2

qm1(.) L1 L3 L1

qm2(.) L2 L1 L2

qmqDSmC(.) L3 L4 L1 L0 L3

Table 7: Fusion with qDSmC

• Fusion with (qDSmH): Working with Shafer’s model forΘ, according to qDSmH
combination rule (29), one gets the result in Table 8.

sinceqmqDSmH(θ1 ∪ θ2) = L1 + L3 = L4.

• Fusion with (qPCR5): Following PCR5 method, we propose to transfer the
qualitative partial masses

a) qm1(θ1)qm2(θ2) = L1 × L1 = L1 to θ1 andθ2 in equal parts (i.e. pro-
portionally toL1 andL1 respectively, butL1 = L1); hence1

2L1 should go
to each of them.

b) qm2(θ1)qm1(θ2) = L2 × L3 = L2 to θ1 andθ2 proportionally toL2 and
L3 respectively; but since we are not able to do an exact proportionalization
of labels, we approximate through transferring1

3L2 to θ1 and 2
3L2 to θ2.

The transfer1/3L2 to θ1 and2/3L2 to θ2 is not arbitrary, but it is an approxima-
tion since the transfer was done proportionally toL2 andL3, andL2 is smaller
thanL3; we mention that it is not possible to do an exact transferring. Nobody
in the literature has done so far normalization of labels, and we tried to do a
quasi-normalization [i.e. an approximation].

Summing a) and b) we get:12L1 + 1
3L2 ≈ L1, which represents the partial

conflicting qualitative mass transferred toθ1, and 1
2L1 + 2

3L2 ≈ L2, which
represents the partial conflicting qualitative mass transferred toθ2. Here we
have mixed qualitative and quantitative information.

Hence we will finally get:

Fore the reason that we can not do a normalization (neither previous authors
on qualitative fusion rules did), we propose for the first time the possibility of
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θ1 θ2 θ1 ∪ θ2 ∅ θ1 ∩ θ2

qm1(.) L1 L3 L1

qm2(.) L2 L1 L2

qmqDSmH(.) L3 L4 L4 L0 L0

Table 8: Fusion with qDSmC

θ1 θ2 θ1 ∪ θ2 ∅ θ1 ∩ θ2

qm1(.) L1 L3 L1

qm2(.) L2 L1 L2

qmqPCR5(.) L4 L5 L1 L0 L0

Table 9: Fusion with qPCR5

quasi-normalization(which is an approximation of the normalization), i.e. in-
stead of dividing each qualitative mass by a coefficient of normalization, we
subtract from each qualitative mass a qualitative coefficient (label) of quasi-
normalization in order to adjust the sum of masses.

Subtraction onL is defined in a similar way to the addition:

Li − Lj =

{

Li−j , if i ≥ j;

L0, if i < j;
(33)

L is closed under subtraction as well.

The subtraction can be used for quasi-normalization only, i. e. moving the final
label result 1-2 steps/labels up or down. It is not used together with addition or
multiplication.

The increment in the sum of fusioned qualitative masses is due to the fact that
multiplication onL is approximated by a larger number, because multiplying
any two numbersa, b in the interval[0, 1], the product is less than each of them,
or we have approximated the producta × b = min{a, b}.

Using the quasi-normalization (subtractingL1), one gets with qDSmH and qPCR5,
the following quasi-normalizedmasses (we use⋆ symbol to specify the quasi-
normalization):
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θ1 θ2 θ1 ∪ θ2 ∅ θ1 ∩ θ2

qm1(.) L1 L3 L1

qm2(.) L2 L1 L2

qm⋆
qDSmH(.) L2 L3 L3 L0 L0

qm⋆
qPCR5(.) L3 L4 L0 L0 L0

Table 10: Fusion with quasi-normalization

4 Conclusion

In this paper we have presented the foundations of DSmT and its main combination
rules for dealing with both the quantitative or qualitativebeliefs. The combination
of qualitative beliefs published here results from very recent research investigations.
DSmT although not sufficiently known in the information fusion and artificial intelli-
gence communities as any new emerging theory has however already been successfully
applied in different fields like multitarget tracking and classification, or remote sensing
application. We hope that this special issue of Information& Security Journal devoted
to Fusing Uncertain, Imprecise and Conflicting informationwill help readers involved
in information fusion to become curious and hopefully more comfortable with our re-
search works and our new ideas in data fusion. DSmT is a new promising paradigm
shift for the combination of precise (and even imprecise), uncertain and potentially
highly conflicting quantitative or qualitative sources of information. It is important to
emphasize that most of methods, like discounting techniques for example, developed
to improve the management of quantitative beliefs in Dempster-Shafer Theory can also
directly be applied in DSmT framework.
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