An IMM Algorithm for Tracking Maneuvering Vehicles in an Adaptive Cruise Control Environment

Тип публикация:

Journal Article

Източник:

International Journal of Control, Automation, and Systems, Volume 2, Issue 3 (2004)

Анотация:

<div dir="ltr" style="font-size: 17.5px; font-family: serif; left: 224.9px; top: 251.007px; transform: rotate(0deg) scale(1.00096, 1); transform-origin: 0% 0% 0px;"><div dir="ltr" style="font-size: 17.5px; font-family: serif; left: 224.9px; top: 251.007px; transform: rotate(0deg) scale(1.00096, 1); transform-origin: 0% 0% 0px;">&nbsp;In this paper, an unscented Kalman filter (UKF) for curvilinear motions in an</div><div dir="ltr" style="font-size: 17.5px; font-family: serif; left: 154px; top: 271.108px; transform: rotate(0deg) scale(1.00113, 1); transform-origin: 0% 0% 0px;">interacting multiple model (IMM) algorithm to track a maneuvering vehicle on a road is</div><div dir="ltr" style="font-size: 17.5px; font-family: serif; left: 154px; top: 291.208px; transform: rotate(0deg) scale(1.00068, 1); transform-origin: 0% 0% 0px;">investigated. Driving patterns of vehicles on a road are modeled as stochastic hybrid systems.</div><div dir="ltr" style="font-size: 17.5px; font-family: serif; left: 154px; top: 311.309px; transform: rotate(0deg) scale(0.999569, 1); transform-origin: 0% 0% 0px;">In order to track the maneuvering vehicles, two kinematic models are derived: A constant</div><div dir="ltr" style="font-size: 17.5px; font-family: serif; left: 154px; top: 331.409px; transform: rotate(0deg) scale(1.00016, 1); transform-origin: 0% 0% 0px;">velocity model for linear motions and a constant-speed turn model for curvilinear motions. For</div><div dir="ltr" style="font-size: 17.5px; font-family: serif; left: 154px; top: 351.51px; transform: rotate(0deg) scale(0.99919, 1); transform-origin: 0% 0% 0px;">the constant-speed turn model, an UKF is used because of the drawbacks of the extended</div><div dir="ltr" style="font-size: 17.5px; font-family: serif; left: 154px; top: 371.61px; transform: rotate(0deg) scale(1.00056, 1); transform-origin: 0% 0% 0px;">Kalman filter in nonlinear systems. The suggested algorithm reduces the root mean squares</div><div dir="ltr" style="font-size: 17.5px; font-family: serif; left: 154px; top: 391.711px; transform: rotate(0deg) scale(1.00242, 1); transform-origin: 0% 0% 0px;">error for linear motions and rapidly detects possible turning motions.&nbsp;</div></div>

Share/Save
Последно обновяване: понеделник, 02 June 2014